Math, asked by preetgill13579, 10 months ago

Rationalise the denominator
 \frac{1}{ \sqrt{10}  +  \sqrt{14}  +  \sqrt{15} +  \sqrt{21}  }

Answers

Answered by ishwarsinghdhaliwal
14

Answer:

 \frac{ \sqrt{10}  +  \sqrt{21}  -  \sqrt{14} -  \sqrt{15}  }{2}

Step-by-step explanation:

Making suitable groups, we get

 \frac{1}{( \sqrt{10} +  \sqrt{21} ) + ( \sqrt{14}  +  \sqrt{15} ) }  \\  = \frac{1}{( \sqrt{10} +  \sqrt{21} ) + ( \sqrt{14}  +  \sqrt{15} ) } \times  \frac{( \sqrt{10} +  \sqrt{21} ) - ( \sqrt{14} +  \sqrt{15}  ) }{( \sqrt{10}  +  \sqrt{21}) - ( \sqrt{14}  +  \sqrt{15}  )}  \\  =  \frac{ \sqrt{10}  +  \sqrt{21}  -  \sqrt{14}  -  \sqrt{15} }{( \sqrt{10}  +  \sqrt{21})^{2}   - ( \sqrt{14}  +  \sqrt{15})^{2}  }  \\  =  \frac{ \sqrt{10}  +  \sqrt{21}   -  \sqrt{14}  -  \sqrt{15} }{10 + 21 + 2 \sqrt{210} - 14 - 15 - 2 \sqrt{210}  }  \\  =   \frac{ \sqrt{10} +  \sqrt{21}  -  \sqrt{14} -  \sqrt{15}   }{31 - 29}  \\  =  \frac{ \sqrt{10}  +  \sqrt{21} -  \sqrt{14}  -  \sqrt{15}  }{2}

Answered by Anonymous
107

Answer:

Making suitable groups, we get

 \frac{1}{( \sqrt{10} +  \sqrt{21} ) + ( \sqrt{14}  +  \sqrt{15} ) }  \\

 = \frac{1}{( \sqrt{10} +  \sqrt{21} ) + ( \sqrt{14}  +  \sqrt{15} ) } \times  \frac{( \sqrt{10} +  \sqrt{21} ) - ( \sqrt{14} +  \sqrt{15}  ) }{( \sqrt{10}  +  \sqrt{21}) - ( \sqrt{14}  +  \sqrt{15}  )}  \\ =  \frac{ \sqrt{10}  +  \sqrt{21}  -  \sqrt{14}  -  \sqrt{15} }{( \sqrt{10}  +  \sqrt{21})^{2}   - ( \sqrt{14}  +  \sqrt{15})^{2}  }  \\ =  \frac{ \sqrt{10}  +  \sqrt{21}   -  \sqrt{14}  -  \sqrt{15} }{10 + 21 + 2 \sqrt{210} - 14 - 15 - 2 \sqrt{210}  }  \\

 =   \frac{ \sqrt{10} +  \sqrt{21}  -  \sqrt{14} -  \sqrt{15}   }{31 - 29}  \\

  =  \frac{ \sqrt{10}  +  \sqrt{21} -  \sqrt{14}  -  \sqrt{15}  }{2}

Similar questions