Math, asked by C9SHROUD, 10 months ago

rationalise the denominator-
 \frac{ \sqrt{a + x} -  \sqrt{a - x}  }{ \sqrt{a + x}  +  \sqrt{a - x} }

Answers

Answered by sprao53413
65

Answer:

Please see the attachment

Attachments:
Answered by Anonymous
63

Answer:

{\sf{ {\dfrac{a - {\sqrt{a^2 - x^2}} }{x}}}}

Step-by-step explanation:

Given : {\sf{\ \ {\dfrac{ {\sqrt{a + x}} - {\sqrt{a - x}} }{ {\sqrt{a + x}} + {\sqrt{a - x}}}} }}

___________________________

Rationalising the denominator.

\implies{\sf{ {\dfrac{ {\sqrt{a + x}} - {\sqrt{a - x}} }{ {\sqrt{a + x}} + {\sqrt{a - x}}}} \times {\dfrac{ {\sqrt{a + x}} - {\sqrt{a - x}} }{ {\sqrt{a + x}} - {\sqrt{a - x}} }} }}

___________________________

\implies{\sf{ {\dfrac{ ( {\sqrt{a + x}} - {\sqrt{a - x}} )^2 }{ ( {\sqrt{a + x}} + {\sqrt{a - x}} )( {\sqrt{a + x}} - {\sqrt{a - x}} ) }}}}

___________________________

{\boxed{\tt{\bigstar \ \ Identity \ : \ (a + b)(a - b) = a^2 - b^2}}}

{\tt{Here, \ a = ( {\sqrt{a + x}} ), \ b = ( {\sqrt{a - x}} )}}

___________________________

{\boxed{\tt{\bigstar \ \ Identity \ : \ (a - b)^2 = a^2 + b^2 - 2ab}}}

{\tt{Here, \ a = ( {\sqrt{a + x}} ), \ b = ( {\sqrt{a - x}} )}}

___________________________

\implies{\sf{ {\dfrac{ ( {\sqrt{a + x}} )^2 + ( {\sqrt{a - x}} )^2 - 2 ( {\sqrt{a + x}} )( {\sqrt{a - x}} ) }{ ( {\sqrt{a + x}} )^2 - ( {\sqrt{a - x}} )^2 }}}}

___________________________

\implies{\sf{ {\dfrac{ a + x + a - x - 2 {\sqrt{(a + x)(a - x)}} }{ (a + x) - (a - x) }}}}

___________________________

\implies{\sf{ {\dfrac{ a + x + a - x - 2 {\sqrt{(a + x)(a - x)}} }{ a + x - a + x }}}}

___________________________

\implies{\sf{ {\dfrac{ a + a - 2 {\sqrt{(a + x)(a - x)}} }{ x + x }}}}

___________________________

{\boxed{\tt{\bigstar \ \ Identity \ : \ (a + b)(a - b) = a^2 - b^2}}}

{\tt{Here, \ a = a, \ b = x}}

___________________________

\implies{\sf{ {\dfrac{ a + a - 2 {\sqrt{(a)^2 - (x)^2}} }{ x + x }}}}

___________________________

\implies{\sf{ {\dfrac{ 2a - 2 {\sqrt{a^2 - x^2}} }{ 2x }}}}

___________________________

We can write this as :

\implies{\sf{ {\dfrac{ 2(a - {\sqrt{a^2 - x^2}}) }{ 2(x) }}}}

___________________________

\implies{\boxed{\boxed{\sf{ {\dfrac{a - {\sqrt{a^2 - x^2}} }{x}}}}}}

___________________________

Similar questions