Math, asked by AashishVS, 1 year ago

Rationalise the denominator:-
 \sqrt{3}  - 1 \div  \sqrt{3}  + 1

Answers

Answered by rajeev378
2
\huge\red{Hi\: Friend}

Here is your answer
 =  \frac{ \sqrt{3} - 1 }{ \sqrt{3} + 1 }   \times  \frac{ \sqrt{3}  - 1}{ \sqrt{3}  - 1} \\  =  \frac{ \sqrt{3}( \sqrt{3}  - 1) - 1( \sqrt{3}   - 1)}{( \sqrt{3}) {}^{2}  - 1 {}^{2}  }  \\  =  \frac{3 -  \sqrt{3} -  \sqrt{3}  + 1}{3 - 1}  \\  =  \frac{4-  2\sqrt{3} }{2}  \\  =  \frac{4}{2}  -  \frac{2 \sqrt{3} }{2}  \\  = 2 -  \sqrt{3}
<marquee>Hope it helps you
Answered by Anonymous
20
\large\mathsf{Ahoy!!}
<i>
Given \rightarrow

 \frac{ \sqrt{3} - 1}{ \sqrt{3} + 1 } \\ \\ = \frac{ \sqrt{3} - 1 }{ \sqrt{3} + 1} \times \frac{ \sqrt{3} - 1}{ \sqrt{3} - 1} \\ \\ = \frac{( \sqrt{3} - 1)( \sqrt{3} - 1) }{ (\sqrt{3} + 1)( \sqrt{3} - 1) }

{ Applying identity :

( a + b ) ( a - b ) = a² - b² }

 = \frac{ {( \sqrt{3} - 1)}^{2} }{ ( { \sqrt{3}) }^{2} - {(1)}^{2} } \\

{ Applying identity :

( a - b )² = a² + b² - 2ab }

 = \frac{ ({ \sqrt{3}) }^{2} + {1}^{2} - 2( \sqrt{3} )(1)}{3 - 1} \\ \\ = \frac{3 + 1 - 2 \sqrt{3} }{2} \\ \\ = \frac{4 - 2 \sqrt{3} }{2} \\ \\ = \frac{2 \: (2 - \sqrt{3}) }{2} \\ \\ = 2 - \sqrt{3}

\impliesTooBusy ¯\_(ツ)_/¯

\impliesBeBrainly
Similar questions