Math, asked by musku425, 1 year ago

Rationalise the denominator x=3-2root2 find x square +1/ x square , x cube +1/x cube

Answers

Answered by ALTAF11
7
Hi Mate !!


x = 3 - 2√2


 \frac{1}{x}  =  \frac{1}{3 - 2 \sqrt{2} }

 \frac{1}{x}  =  \frac{1}{3 - 2 \sqrt{2} }  \times  \frac{3 + 2 \sqrt{2} }{3 + 2 \sqrt{2} }


 \frac{1}{x}  =  \frac{3 + 2 \sqrt{2} }{9 - 8}  =  \frac{3 + 2 \sqrt{2} }{1}


[ Using identity :- ( a + b ) ( a - b ) = a² - b² in denominator ]


 \frac{1}{x}  =  \:  \: 3 + 2 \sqrt{2}


Now ,

( {x +  \frac{1}{x}) }^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2x \times  \frac{1}{x}


[ Using identity : ( a + b )² = a² + b² + 2ab ]


( {3 - 2 \sqrt{2} + 3 + 2 \sqrt{2}  \:  \:  \: ) }^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2


36 =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2


36 - 2 =  {x}^{2}  +  \frac{1}{ {x}^{2} }


34 =  {x}^{2}  +  \frac{1}{ {x}^{2} }


___________________

Now ,


[ Using identity : ( a + b )³ = a³ + b³ + 3ab ( a + b ) ]



 {(x +  \frac{1}{x} )}^{3}  =  {x}^{3}  +  \frac{1}{ {x}^{3} }  \:  \:  +  \:  \: 3x \times  \frac{1}{x} (x +  \frac{1}{x} )


( {3 - 2 \sqrt{2}  \:  \:  +  \:  \:3 + 2 \sqrt{2}  )}^{3}  =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \: (3  \:  \:  -  \: 2 \sqrt{2}   +  \: 3 \:  +  \: 2 \sqrt{2} )



216 \:  =  \:  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times 6


216 =  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 18


216 - 18 =   \:  {x}^{3} \:  +  \frac{1}{ {x}^{3} }


198 =  {x}^{3}  \:  +  \:  \frac{1}{ {x}^{3} }


Hence ,

 {x}^{2}  +  \:  \frac{1}{ {x}^{2} }  = 34


 \:198 =  {x}^{3}  \:  +  \:  \frac{1}{ {x}^{3} }




musku425: Thanxs bhai
ALTAF11: my pleasure :)
Similar questions