Rationalise the following :-
![\\ \\ \large \red{ \frac{7 \sqrt{3} }{ \sqrt{10} + \sqrt{3} } - \frac{ 2\sqrt{5} }{ \sqrt{6} + \sqrt{5} } - \frac{3 \sqrt{2} }{ \sqrt{15} + 3 \sqrt{2} } } \\ \\ \large \red{ \frac{7 \sqrt{3} }{ \sqrt{10} + \sqrt{3} } - \frac{ 2\sqrt{5} }{ \sqrt{6} + \sqrt{5} } - \frac{3 \sqrt{2} }{ \sqrt{15} + 3 \sqrt{2} } }](https://tex.z-dn.net/?f=++%5C%5C++%5C%5C+%5Clarge+%5Cred%7B++%5Cfrac%7B7+%5Csqrt%7B3%7D+%7D%7B+%5Csqrt%7B10%7D++%2B++%5Csqrt%7B3%7D+%7D+-++%5Cfrac%7B+2%5Csqrt%7B5%7D+%7D%7B+%5Csqrt%7B6%7D++%2B++%5Csqrt%7B5%7D+%7D+++-++%5Cfrac%7B3+%5Csqrt%7B2%7D+%7D%7B+%5Csqrt%7B15%7D+%2B+3+%5Csqrt%7B2%7D++%7D+%7D)
(●✿●)→No spam
(●✿●)→Please Help
Answers
Answered by
5
Basic Concept Used :-
Method of Rationalization :-
The method of Rationalization is used to remove the radicals from denominator and it means multiply and divide by conjugate of denominator.
Consider,
Consider,
Consider,
Therefore,
Hence,
Answered by
1
Attachments:
![](https://hi-static.z-dn.net/files/dba/692b5f3c8a826ac55320a15490b8eb03.jpg)
Similar questions