Math, asked by BrainlyHoney, 2 months ago

Rationalise the following :-

  \\  \\ \large \red{  \frac{7 \sqrt{3} }{ \sqrt{10}  +  \sqrt{3} } -  \frac{ 2\sqrt{5} }{ \sqrt{6}  +  \sqrt{5} }   -  \frac{3 \sqrt{2} }{ \sqrt{15} + 3 \sqrt{2}  } }

(●✿●)→No spam
(●✿●)→Please Help

Answers

Answered by mathdude500
5

Basic Concept Used :-

Method of Rationalization :-

The method of Rationalization is used to remove the radicals from denominator and it means multiply and divide by conjugate of denominator.

\boxed{ \sf \: (x + y)(x - y) = {x}^{2} -  {y}^{2}}

\large\underline{\sf{Solution-}}

\red{\rm :\longmapsto\: \dfrac{7 \sqrt{3} }{ \sqrt{10} + \sqrt{3} } - \dfrac{ 2\sqrt{5} }{ \sqrt{6} + \sqrt{5} } - \dfrac{3 \sqrt{2} }{ \sqrt{15} + 3 \sqrt{2} } }

Consider,

 \blue{\rm :\longmapsto\:\dfrac{7 \sqrt{3} }{ \sqrt{10} +  \sqrt{3}}}

{ \: \rm  =  \:  \: \dfrac{7 \sqrt{3} }{ \sqrt{10} +  \sqrt{3}} \times \dfrac{ \sqrt{10} -  \sqrt{3}  }{ \sqrt{10}  -  \sqrt{3} } }

\rm  =  \:  \: \dfrac{7 \sqrt{30}  - 21}{10 - 3}

\rm  =  \:  \: \dfrac{7 (\sqrt{30}  - 3)}{7}

\rm  =  \:  \:  \sqrt{30}  - 3

 \:  \:  \:  \:  \:  \:  \: \blue{ \boxed{\bf :\implies\:\dfrac{7 \sqrt{3} }{ \sqrt{10} +  \sqrt{3}} =  \sqrt{30} - 3 }}

Consider,

 \green{ \: \bf :\longmapsto\:\dfrac{2 \sqrt{5} }{ \sqrt{6} +  \sqrt{5}}}

\rm  =  \:  \: \dfrac{2 \sqrt{5} }{ \sqrt{6}  +   \sqrt{5}  }  \times \dfrac{ \sqrt{6} -  \sqrt{5}  }{ \sqrt{6}  -  \sqrt{5} }

\rm  =  \:  \: \dfrac{2 \sqrt{30} - 10}{6 - 5}

\rm  =  \:  \: 2 \sqrt{30} - 10

 \:  \:  \:  \:  \:  \:  \: \green{ \boxed{ \: \bf :\implies\:\dfrac{2 \sqrt{5} }{ \sqrt{6} +  \sqrt{5}} = 2 \sqrt{30}  - 10}}

Consider,

 \purple{ \: \bf :\longmapsto\:\dfrac{3 \sqrt{2} }{ \sqrt{15} + 3\sqrt{2}}}

\rm  =  \:  \: \dfrac{3 \sqrt{2} }{ \sqrt{15}  + 3 \sqrt{2} }  \times \dfrac{ \sqrt{15}  - 3 \sqrt{2} }{ \sqrt{15} - 3 \sqrt{2} }

\rm  =  \:  \: \dfrac{3 \sqrt{30} - 18 }{15 - 18}

\rm  =  \:  \: \dfrac{3( \sqrt{30}  - 6)}{ - 3}

\rm  =  \:  \: 6 -  \sqrt{30}

 \:  \:  \:  \:  \:  \:  \:  \: \purple{ \boxed{\:\bf :\implies\:\dfrac{3 \sqrt{2} }{ \sqrt{15} + 3\sqrt{2}} = 6 -  \sqrt{30}}}

Therefore,

\red{\rm :\longmapsto\: \dfrac{7 \sqrt{3} }{ \sqrt{10} + \sqrt{3} } - \dfrac{ 2\sqrt{5} }{ \sqrt{6} + \sqrt{5} } - \dfrac{3 \sqrt{2} }{ \sqrt{15} + 3 \sqrt{2} } }

\rm  =  \:  \:  \sqrt{30} - 3 - (2 \sqrt{30} - 10) - (6 -  \sqrt{30})

\rm  =  \:  \:  \sqrt{30} - 3 - 2 \sqrt{30}  +  10 - 6  +   \sqrt{30})

\rm  =  \:  \: 2 \sqrt{30}  - 2 \sqrt{30}  + 1

 \: \rm  =  \:  \: 1

Hence,

\red{ \boxed{ \dfrac{7 \sqrt{3} }{ \sqrt{10} + \sqrt{3} } - \dfrac{ 2\sqrt{5} }{ \sqrt{6} + \sqrt{5} } - \dfrac{3 \sqrt{2} }{ \sqrt{15} + 3 \sqrt{2} }  = 1}}

Answered by akeertana503
1

\:  \: \:   \: \large\pink꧁ \green{{\underline{\red{ \underline{\purple{\overline{\orange{\overline{ \huge\blue{AnsweR}}}}}}}}}} \pink꧂

Attachments:
Similar questions