Math, asked by tandonbond77, 10 months ago

rationalising the denominator of 1/root 7-2

Answers

Answered by kamleshkantaria
3

Answer:

The answer is \sqrt{7} + 2/3

Step-by-step explanation:

To rationalize the denominator of the number given in the question

Step 1 = Multiply both the denominator and the numerator of 1/\sqrt{7} - 2 with the conjugate of the denominator

The conjugate of the denominator(\sqrt{7} - 2) is

That is

=  1/\sqrt{7} - 2 X

Step 2 = Follow the identity

That is

= \sqrt{7} + 2[Using multiplication property]/(

= \sqrt{7} + 2/7 - 4

= \sqrt{7} + 2/3

Answered by GalacticCluster
5

 \textbf{ \underline{Question :} } \\  \\ </p><p></p><p> \text{Rationalise \: the \: denominator \: of }\bf{ \dfrac{1}{ \sqrt{7 }  - 2} } \\  \\  \textbf{ \underline{Solution :}}\\ \\ \sf{\red{Multiplying\:both\: the\:numerator\:and\:the\:denominator\:of  }}\\ \sf{\red{\bigg(\dfrac{1}{ \sqrt{7 }  - 2}\bigg)\: with\:the\:conjugate\:of\:its\: denominator \big(\sqrt{7 }  + 2\big)}}\\    \\   \qquad \: \bf{ \dfrac{1}{ \sqrt{7}  - 2}  \times  \dfrac{\sqrt{7 } + 2}{\sqrt{7 } + 2} } \\  \\    \small{ \textsf{comparing\:the\:denominator\:with\:the\:alzebric\:formula  :}} \\  \qquad \:  \fbox{ \red{ \sf{{x}^{2} -  {y}^{2}  = (x + y)(x - y)}}} \\  \\\sf{Here ,}\\ \quad \: \red{ \bullet} \:  \: \sf{ \small{ x = \sqrt{7}}}\\ \quad \: \red{ \bullet}  \:  \: \sf{ \small{ y = 2}}\\ \\  \rightarrow    \fbox{ \red{\bf{\small{ { \big(\sqrt{7}}  \big)^{2}  -  {2}^{2} = \big(\sqrt{7}  + 2 \big)\big(\sqrt{7}  - 2 \big)}}}} \\  \\  \longrightarrow \:  \dfrac{ \sqrt{7}  + 2 }{ {  \big(\sqrt{7}}  \big)^{2}  -  {2}^{2}}  \\  \\  \longrightarrow  \: \dfrac{ \sqrt{7}  + 2 }{ 7 - 4}  \\  \\ \longrightarrow \fbox{  \bf{\red{\: \dfrac{ \sqrt{7}  + 2 }{ 3} } }}\\   \\   \underline{ \sqrt{7}  = 2.64 \: ,\textsf{ \scriptsize{putting \: the \: value \: in \: the \: answer \: we \: got \: above}} \:  \:  }\\ \\ \longrightarrow  \: \dfrac{ 2.64  + 2 }{ 3}\\  \\ \longrightarrow  \: \dfrac{ 4.64}{ 3} \\  \\ \longrightarrow  \: \red{1.546} \\  \\  \bf{so \: on \: rationalising \: the \: denominator \: of }\bf{ \dfrac{1}{ \sqrt{7 }  - 2} } \\  \underline{ \bf{we \: got \:  \bigg(\dfrac{ \sqrt{7}  + 2 }{ 3} \bigg) \:  or \:  \big(1.546 \big)} \:  \:  \:  \:  \:  \:  \: }

Similar questions