Math, asked by pushpapathak44, 6 months ago

Rationalize -: {1 /( √11 -√2)}

Answers

Answered by abhinavaditya1411
1

Step-by-step explanation:

 \frac{1}{ \sqrt{11} -  \sqrt{2}  }  \times  \frac{ \sqrt{11} +  \sqrt{2}  }{ \sqrt{11} +  \sqrt{2}  }

 \frac{ \sqrt{11} +  \sqrt{2}  }{11 - 2}

 \frac{ \sqrt{11} +  \sqrt{2}  }{9}

I HOPE THIS ANSWER WILL HELP U....

PLEASE MARK MY ANSWER AS THE BRAINIEST...

Answered by Anonymous
21

{\huge{\underline{\underline{\bf{\pink{Answer}}}}}}

To Rationalize the denominator -

 \frac{1}{ \sqrt{11}  -  \sqrt{2} }

Solution -

To , Rationalize , we Multiply the neumerator and the denominator by the conjugate of the denominator ,

here , it is (√11 + √2)

 \implies \:  \frac{1}{ \sqrt{11}  -  \sqrt{2} }  \times  \frac \red{  \sqrt{11}  +  \sqrt{2}  } \red{ \sqrt{11}  +  \sqrt{2} }

we know , (a + b)(a - b) = a² - b²

 \implies \:  \frac{ \sqrt{11}   +  \sqrt{2} }{ {( \sqrt{11} )}^{2}  -  {( \sqrt{2}) }^{2} }

 \implies \:  \frac{ \sqrt{11}  +  \sqrt{2}  }{11 - 2}  \\  \\  \implies \:  \frac \green{ \sqrt{11} +  \sqrt{2}  } \green{9}

Similar questions
Math, 6 months ago