Math, asked by Yagyav, 1 year ago

rationalize:- 1/√7+√3-√2

Attachments:

Answers

Answered by genius360
37
this is the right answer
Attachments:

Yagyav: root 7 pore pr hai
Answered by adventureisland
31

Answer:

\frac{1}{\sqrt{7}+\sqrt{3}-\sqrt{2}}=\frac{6 \sqrt{3}-8 \sqrt{2}-2 \sqrt{7}+2 \sqrt{42}}{20}

Solution:

\frac{1}{\sqrt{7}+\sqrt{3}-\sqrt{2}}

Simplifying we get,

\Rightarrow \frac{1}{\sqrt{7}+\sqrt{3}-\sqrt{2}} \times \frac{\sqrt{7}+\sqrt{3}-\sqrt{2}}{\sqrt{7}+\sqrt{3}-\sqrt{2}}

\Rightarrow \frac{\sqrt{7}+\sqrt{3}-\sqrt{2}}{\left((\sqrt{7}+\sqrt{3})^{2}\right)-(\sqrt{(2)^{2}})}

simplifying,

\Rightarrow \frac{\sqrt{7}+\sqrt{3}-\sqrt{2}}{8+2 \sqrt{21}}

\Rightarrow \frac{\sqrt{7}+\sqrt{3}-\sqrt{2}}{8+2 \sqrt{21}} \times \frac{8-2 \sqrt{21}}{8-2 \sqrt{21}}

\Rightarrow \frac{2 \sqrt{7}-6 \sqrt{3}+8 \sqrt{2}-2 \sqrt{42}}{8^{2}-(2 \sqrt{21})^{2}}

On solving we get,

\Rightarrow \frac{2 \sqrt{7}-6 \sqrt{3}+8 \sqrt{2}-2 \sqrt{42}}{64-84}

\Rightarrow \frac{6 \sqrt{3}-8 \sqrt{2}-2 \sqrt{7}+2 \sqrt{42}}{20}

Similar questions