Math, asked by sanju2363, 9 months ago

rationalize 1/√7 and 1/√2 and 1/√5​

Answers

Answered by Anonymous
1

Step-by-step explanation:

 \frac{1}{ \sqrt{7} }  \times  \frac{ \sqrt{7} }{ \sqrt{7} }

 \frac{ \sqrt{7} }{7}

 \frac{1}{ \sqrt{2} }  \times  \frac{ \sqrt{2} }{ \sqrt{2} }  \\  \frac{ \sqrt{2} }{2}

 \frac{1}{ \sqrt{5} }  \times  \frac{ \sqrt{5} }{ \sqrt{5} }  \\  \frac{ \sqrt{5} }{5}

Answered by Anonymous
2

Answer:

  • Rationalize 1/√7 and 1/√2 and 1/√5.

Calculation:

1)

\sf = \dfrac{1}{\sqrt{7}}

\sf = \dfrac{1}{\sqrt{7}} \times \dfrac{\sqrt{7}}{\sqrt{7}}

\sf = \dfrac{\sqrt{7}}{(\sqrt{7}})^2

{\sf{\underline{\boxed{\green{\sf{= \dfrac{\sqrt{7}}{7} }}}}}}

2)

\sf = \dfrac{1}{\sqrt{2}}

\sf = \dfrac{1}{\sqrt{2}} \times \dfrac{\sqrt{2}}{\sqrt{2}}

\sf = \dfrac{\sqrt{2}}{(\sqrt{2}})^2

{\sf{\underline{\boxed{\green{\sf{= \dfrac{\sqrt{2}}{2} }}}}}}

3)

\sf = \dfrac{1}{\sqrt{5}}

\sf = \dfrac{1}{\sqrt{5}} \times \dfrac{\sqrt{5}}{\sqrt{5}}

\sf = \dfrac{\sqrt{5}}{(\sqrt{5}})^2

{\sf{\underline{\boxed{\green{\sf{= \dfrac{\sqrt{5}}{5} }}}}}}

That's the answer!

Similar questions