Math, asked by PAWARSAHAB, 1 year ago

rationalize 7 + 3 root 5 / 7 minus 3 root 5

Answers

Answered by Anonymous
359
hy
7+3√5/7-3√5

7+3√5/7-3√5× 7+3√5/7+3√5

49+45+42√5/49-45

94+42√5/4

2(47+21√5)/4

47+21√5/2 Ans

Hope it helps u friend!
Answered by phillipinestest
213

Value of rationalization of  \bold{\frac{7+3 \sqrt{5}}{7-3 \sqrt{5}}} is equal to  \bold{\frac{(47+21 \sqrt{5 )}}{2}}

Solution:

To start with, rationalization we need to multiply 7+3 \sqrt{5}  with both the numerator and denominator to remove the roots. Multiplying 7+3 \sqrt{5} we get

\frac{7+3 \sqrt{5}}{7-3 \sqrt{5}} \times \frac{7+3 \sqrt{5}}{7+3 \sqrt{5}}

\frac{(7+3 \sqrt{5})^{2}}{(7)^{2}-(3 \sqrt{5})^{2}}=\frac{49+42 \sqrt{5}+45}{49-45}=\frac{94+42 \sqrt{5}}{4}

(we get the values in (a+b)^{2}  mode in the numerator and \left(a^{2}-b^{2}\right) mode in the denominator. Therefore, the primary value after multiplication is  

Taking 2 common in both numerator and denominator we get \frac{94+42 \sqrt{5}}{4}

 \bold{\frac{2(47+21 \sqrt{5})}{2.2}=\frac{(47+21 \sqrt{5})}{2}}

Similar questions