Math, asked by ksolanki2058, 3 months ago

rationalize:-. fast , very fast​

Attachments:

Answers

Answered by Anonymous
4

\sf{Answer}

Given :-

 \dfrac{2}{ \sqrt{5} -  \sqrt{6}  }

To do :-

Rationalize the denominator

Solution:-

For Rationalising the denominator we have to multiply with Rationalising factor

Rationalising factor is nothing but just we have to change the sign

 \sqrt{5}  -  \sqrt{6}  =  \sqrt{5}  +  \sqrt{6}

This is the Rationalising factor

So, multiply and divide with its Rationalizing factor

 \dfrac{2}{ \sqrt{5}  -  \sqrt{6} }  \times  \dfrac{ \sqrt{5}  +  \sqrt{6} }{ \sqrt{5}  +  \sqrt{6} }

 \dfrac{2( \sqrt{5}  +  \sqrt{6}) }{ \sqrt{5 - }  \sqrt{6}  \times  \sqrt{5} +  \sqrt{6}  }

 \dfrac{2 \sqrt{5 }  + 2 \sqrt{6} }{ \sqrt(5) {}^{2} -  \sqrt{(6)} {}^{2}  }

 \dfrac{2 \sqrt{5}  + 2 \sqrt{6} }{5 - 6}

 \dfrac{2 \sqrt{5} + 2 \sqrt{6}  }{ - 1}

 \dfrac{ - 2 \sqrt{5} + 2 \sqrt{6}  }{1}

 \dfrac{2 \sqrt{6} - 2 \sqrt{5}  }{1}

Hence denomiantor rationalised!

Formula used for Rationalising denominator

(a + b) ( a - b) = a²-b²

___________________

Similar questions