Math, asked by anushree1444, 7 months ago

Rationalize :-
 \frac{ \sqrt{2x - 5} }{ \sqrt{2x + 5} }  +  \frac{ \sqrt{2x + 5} }{ \sqrt{2x - 5} }

Answers

Answered by BrainlyTornado
49

ANSWER:

\sf\dfrac{ \sqrt{2x - 5} }{ \sqrt{2x + 5} } + \dfrac{ \sqrt{2x + 5} }{ \sqrt{2x - 5} }  =  \dfrac{ 4x}{ \sqrt{4x^{2}   -   25 } }

GIVEN:

 \sf\dfrac{ \sqrt{2x - 5} }{ \sqrt{2x + 5} } + \dfrac{ \sqrt{2x + 5} }{ \sqrt{2x - 5} }

TO RATIONALIZE:

 \sf\dfrac{ \sqrt{2x - 5} }{ \sqrt{2x + 5} } + \dfrac{ \sqrt{2x + 5} }{ \sqrt{2x - 5} }

EXPLANATION:

 \sf Take \ A = \dfrac{ \sqrt{2x - 5} }{ \sqrt{2x + 5} }

 \sf Multiply\ and\ divide\ by\ \sqrt{2x - 5}

 \sf  \leadsto\dfrac{ \sqrt{2x - 5} }{ \sqrt{2x + 5} }  \\  \\ \\ \sf\leadsto\dfrac{ \sqrt{2x - 5} }{ \sqrt{2x + 5} } \times \dfrac{ \sqrt{2x - 5} }{ \sqrt{2x  -  5} } \\  \\ \\ \boxed{ \bold{\large{ \purple{(A  -  B)(A -  B) = (A -  B)^2}}}} \\  \\ \\\boxed{ \bold{\large{ \red{(A+B)(A-B) = A^2-B^2}}}}\\  \\ \\ \\ \sf\leadsto \dfrac{ (\sqrt{2x - 5})^{2}  }{ \sqrt{(2x)^{2}   -   {5}^{2} } } \\  \\ \\ \sf\leadsto \dfrac{ 2x - 5 }{ \sqrt{4x^{2}   -   25 } }

\sf Take\ B = \dfrac{ \sqrt{2x + 5} }{ \sqrt{2x - 5} }

 \sf Multiply\ and\ divide\ by\ \sqrt{2x  +  5}

 \sf  \leadsto\dfrac{ \sqrt{2x  +  5} }{ \sqrt{2x  -  5} }  \\  \\ \\ \sf\leadsto\dfrac{ \sqrt{2x  +  5} }{ \sqrt{2x  -  5} } \times \dfrac{ \sqrt{2x  + 5} }{ \sqrt{2x   +  5} } \\  \\ \\ \boxed{ \bold{\large{ \blue{(A  +  B)(A  +  B) = (A  + B)^2}}}} \\  \\ \\\boxed{ \bold{\large{\orange{(A+B)(A-B) = A^2-B^2}}}} \\  \\ \\ \sf\leadsto \dfrac{ (\sqrt{2x  +  5})^{2}  }{ \sqrt{(2x)^{2}   -   {5}^{2} } } \\  \\ \\ \sf\leadsto \dfrac{ 2x  +  5 }{ \sqrt{4x^{2}   -   25 } }

Add A and B

\sf\leadsto \dfrac{ 2x - 5 }{ \sqrt{4x^{2}   -   25 } } + \dfrac{ 2x  +  5 }{ \sqrt{4x^{2}   -   25 } }

\sf\leadsto \dfrac{ 2x - 5 + 2x + 5 }{ \sqrt{4x^{2}   -   25 } }

\sf\leadsto \dfrac{ 4x}{ \sqrt{4x^{2}   -   25 } }

\sf\dfrac{ \sqrt{2x - 5} }{ \sqrt{2x + 5} } + \dfrac{ \sqrt{2x + 5} }{ \sqrt{2x - 5} }  =  \dfrac{ 4x}{ \sqrt{4x^{2}   -   25 } }

Similar questions