Math, asked by pragya122005, 1 year ago

rationalize the denominator 1/(1+√5+√3)

Answers

Answered by hukam0685
12

 \frac{1}{1 +  \sqrt{5} +  \sqrt{3}  } \\  =  \frac{(1 +  \sqrt{5}) -  \sqrt{3}  }{((1 +  \sqrt{5}) +  \sqrt{3} )  \times ((1 +  \sqrt{5}) -  \sqrt{3} ) }  \\  =   \frac{(1 +  \sqrt{5}) -  \sqrt{3}  }{((1 +  \sqrt{5}) +  \sqrt{3} )  \times ((1 +  \sqrt{5}) -  \sqrt{3} ) }   \\  =  \frac{(1 +  \sqrt{5} ) -  \sqrt{3} }{( {1 +  \sqrt{5} )}^{2}  - ( { \sqrt{3} }^{2}) }  \\  =  \frac{1 +  \sqrt{5}   -  \sqrt{3}  }{1 + 5 + 2 \sqrt{5}  - 3}  \\  =  \frac{1 +  \sqrt{5}  -  \sqrt{3} }{3  + 2 \sqrt{5} }  \\  = \frac{(1 +  \sqrt{5}  -  \sqrt{3})(3 - 2 \sqrt{5}  )}{(3  + 2 \sqrt{5} )(3 - 2 \sqrt{5}) }  \\  =  \frac{3 - 2 \sqrt{5}  + 3 \sqrt{5} - 10 - 3 \sqrt{3} + 2 \sqrt{15}   }{9 - 20}  \\  =  \frac{ - 7 +  \sqrt{5} - 3 \sqrt{3}  + 2 \sqrt{15}   }{ - 11}  \\  = \frac{7  -   \sqrt{5}  +  3 \sqrt{3}   -  2 \sqrt{15}   }{  11}
Answered by bhavsarseema
2

Step-by-step explanation:

plz see the image

and plz mark Brianlist

Attachments:
Similar questions