Math, asked by trupthi8, 1 month ago

Rationalize the denominator 1/2√7+3√3​

Answers

Answered by ImperialGladiator
36

Answer:

  • 2√7 + 3√3

Explanation:

Given fraction,

 \longrightarrow \:  \dfrac{1}{2 \sqrt{7 }+ 3 \sqrt{3} }

Rationalising the denominator by multiplying the given fraction by the conjugate of the denominator i.e., 27 - 33

 \longrightarrow \:  \dfrac{1}{2 \sqrt{7 }+ 3 \sqrt{3} }  \times  \dfrac{2 \sqrt{7} - 3 \sqrt{3}  }{2 \sqrt{7} - 3 \sqrt{3}  }

 \longrightarrow \:  \dfrac{1({2 \sqrt{7 }+ 3 \sqrt{3}) } } {{(2 \sqrt{7} + 3 \sqrt{3})(  }{2 \sqrt{7} - 3 \sqrt{3} ) } }

Applying the identity (a + b)(a - b) = a² - b² in the denominator.

 \longrightarrow \:  \dfrac{({2 \sqrt{7 }+ 3 \sqrt{3}) } } {{(2 \sqrt{7} {)}^{2}  - (3 \sqrt{3} {)}^{2} }}

 \longrightarrow \:  \dfrac{({2 \sqrt{7 }+ 3 \sqrt{3}) } } {{28- 27}}

 \longrightarrow \:  \dfrac{({2 \sqrt{7 }+ 3 \sqrt{3}) } } {{1}}

 \longrightarrow \:  {({2 \sqrt{7 }+ 3 \sqrt{3}) } }

Required answer: 27 + 33

_______________________

Answered by XxcryingxX
2

Answer:

maybe my intentions were not to help ya.

Step-by-step explanation:

hope it helps you.

Similar questions