rationalize the denominator 1/3√5+2√2
Answers
Step-by-step explanation:
Explanation:
Rationalising means Multiplying the numerator and denominator both by with the opposite sign of denominator.
Here,this identity is used:-
_________________________________
calculation:
__________________________________
✓
Answer:
=>
3
5
+2
2
1
×
3
5
−2
2
3
5
−2
2
Here,this identity is used:-
\bold{\boxed{(x + y)(x - y) = {x}^{2} - {y}^{2}}}
(x+y)(x−y)=x
2
−y
2
= > \frac{3 \sqrt{5} - 2 \sqrt{2} }{ {(3 \sqrt{5}) }^{2} - {(2 \sqrt{2}) }^{2} }=>
(3
5
)
2
−(2
2
)
2
3
5
−2
2
_________________________________
calculation:
= > \sqrt{5} \times \sqrt{5} = 5( {5}^{ \frac{1}{2} } \times {5}^{ \frac{1}{2} } = {5}^{ \frac{1}{2} + \frac{1}{2} } = 5)=>
5
×
5
=5(5
2
1
×5
2
1
=5
2
1
+
2
1
=5)
= > \sqrt{2} \times \sqrt{2} = 2( {2}^{ \frac{1}{2} } \times {2}^{ \frac{1}{2} } = {2}^{ \frac{1}{2} + \frac{1}{2} } = 2)=>
2
×
2
=2(2
2
1
×2
2
1
=2
2
1
+
2
1
=2)
__________________________________
= > \frac{3 \sqrt{5} - 2 \sqrt{2} }{45 - 8}=>
45−8
3
5
−2
2
\bold{= > \frac{3 \sqrt{5} - 2 \sqrt{2} }{37} }=>
37
3
5
−2
2
✓