Math, asked by abhiash1302, 6 months ago

Rationalize the denominator 1/6+√4

Answers

Answered by Anonymous
5

Answer:

 =  >  \frac{6 -  \sqrt{4} }{32}

Step-by-step explanation:

Since, \: the \: denominator = 6 +  \sqrt{4} , \\ its \: rationalizing \: factor = 6 -  \sqrt{4}  \\ Therefore, \:  \frac{1}{6 +  \sqrt{4} }  =  \frac{1}{6 +  \sqrt{4} }  \times  \frac{6 -  \sqrt{4} }{6 -  \sqrt{4} }  \\  =  \frac{6 -  \sqrt{4} }{36 - 4}  \\  [Since \: (6 +  \sqrt{4} ) (6 -  \sqrt{4}) = (6) {}^{2} - ( \sqrt{4}  ) {}^{2}  \\  =  > 36 - 4 = 32 ] \\  =  >  \frac{6 -  \sqrt{4} }{32}

Similar questions