Math, asked by bidishadas06, 10 months ago

rationalize the denominator
2÷√3-√5​

Answers

Answered by kristina7
4

Answer:

2÷√3-√5 = 2÷√3-√5 × √3+√5 / √3+√5

= 2 √3+2√5 ÷ -2

Answered by pulakmath007
0

\displaystyle \bf   \frac{2}{ \sqrt{3}  -  \sqrt{5} }  =  - ( \sqrt{3}  +  \sqrt{5} )

Given :

\displaystyle \sf   \frac{2}{ \sqrt{3}  -  \sqrt{5} }

To find :

To rationalize the denominator

Solution :

Step 1 of 2 :

Write down the given fraction

Here the given fraction is

\displaystyle \sf   \frac{2}{ \sqrt{3}  -  \sqrt{5} }

Step 2 of 2 :

Rationalize the denominator

\displaystyle \sf   \frac{2}{ \sqrt{3}  -  \sqrt{5} }

Multiplying both of the numerator and denominator by √3 + √5 we get

\displaystyle \sf   \frac{2}{ \sqrt{3}  -  \sqrt{5} }

\displaystyle \sf   =  \frac{2( \sqrt{3} +  \sqrt{5} ) }{ (\sqrt{3}  -  \sqrt{5})( \sqrt{3} +  \sqrt{5} )  }

\displaystyle \sf   =  \frac{2( \sqrt{3} +  \sqrt{5} ) }{  {( \sqrt{3} )}^{2}   -  {( \sqrt{5} )}^{2}  }

\displaystyle \sf   =  \frac{2( \sqrt{3} +  \sqrt{5} ) }{ (3 - 5 )  }

\displaystyle \sf   =  \frac{2( \sqrt{3} +  \sqrt{5} ) }{  - 2  }

\displaystyle \sf   =  - ( \sqrt{3} +  \sqrt{5} )

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. 4√6 + 7√6 is equal to:

https://brainly.in/question/47455821

2. Simplify (3 + √2) (3 - √2).

https://brainly.in/question/7751441

#SPJ2

Similar questions