Math, asked by nandkishormalekar, 5 months ago

rationalize the denominator 2√5 -√3/ 2√5 +√3

Answers

Answered by xInvincible
0

\color{red}{ANSWER :-}

\frac{2\sqrt{5}-\sqrt{3}}{2\sqrt{5}+\sqrt{3}}

 \bf{lets \: rationalize} \\   = )\frac{2 \sqrt{5}  -  \sqrt{3} }{2 \sqrt{5} +  \sqrt{3}  }  \times  \frac{2 \sqrt{5} -  \sqrt{3}  }{2 \sqrt{5} -  \sqrt{3}  }  \\  \frac{(x - y)(x - y) =  {x}^{2} - 2xy +  {y}^{2}  }{(x + y)(x - y) =  {x}^{2} -  {y}^{2}  }  \\  = )  \frac{(2 \sqrt{5} {)}^{2} - (2 \times 2 \sqrt{5}  \times  \sqrt{3}) + ( \sqrt{ {3} }  {)}^{2}   }{ ({2 \sqrt{5}) }^{2} -  { (\sqrt{3} )}^{2}  }   \\  = ) \frac{(4 \times 5) - 4 \sqrt{15} + 3 }{(4 \times 5) - 3}  \\  = ) \frac{20 - 4 \sqrt{15}  + 3}{20 - 3}  \\  = ) \boxed{ \frac{23 - 4 \sqrt{15} }{17} }

\color{Orange}{Hope \: it\: helped}

Similar questions