Math, asked by AnirbanMukjerjee980, 1 year ago

Rationalize the denominator √3-1/√3+1

Answers

Answered by DevilDoll12
29
HEYA!!
---------

 \frac{ \sqrt{3} - 1 }{ \sqrt{3} + 1 }  \times  \frac{ \sqrt{3}  - 1}{ \sqrt{3}  - 1}  \\  \\    \\   \frac{( \sqrt{3} - 1) {}^{2}  }{ \sqrt{3} {}^{2} - 1 {}^{2}   }  \\  \\  =  \frac{3 + 1 - 2 \sqrt{3} }{2}  \\  \\   = \frac{4 - 2 \sqrt{3} }{2}  \\  \\  =  \frac{2(2 -  \sqrt{3}) }{2}  \\  \\  = 2 -  \sqrt{3}
-----------------------------------------------------------------------------------------------------

AnirbanMukjerjee980: thanks friend
DevilDoll12: welcome ☺
AnirbanMukjerjee980: where you live
Anonymous: Amazing, miss aryabhatta.. XD
Answered by Anonymous
53

Hey mate!

Thank you for asking this question! ❤

Answer:

____________________________________________________

Identities used:

(a + b)(a - b) = a² - b²

(a + b)² = a² + 2ab + b²

Given,

 \frac{ \sqrt{3 - 1} }{ \sqrt{3 + 1} }

On rationalizing the denominator, we get:

 \frac{ \sqrt{3 - 1} }{ \sqrt{3 + 1} } \times \frac{ \sqrt{3 - 1} }{ \sqrt{3 - 1} }


 = \frac{ (\sqrt{3 } ) {}^{2} + (1) {}^{2} + 2 (\sqrt{3})(1) }{( \sqrt{3}) {}^{2} - (1) {}^{2} }


 = \frac{3 + 1 - 2 \sqrt{3} }{2}


 = \frac{4 - 2 \sqrt{3} }{2}


 = \frac{2(2 - \sqrt{3}) }{2}


 = 2 - \sqrt{3}

____________________________________________________

Hope it helps you! ヅ

✪ Be Brainly ✪


akku1877: AWESOME Maths genius. ^_^ :)
Anonymous: :) ❤
Similar questions