Math, asked by ujjwalgupta30590, 4 months ago

rationalize the denominator ​

Attachments:

Answers

Answered by Anonymous
17

Answer :-

 \implies \cfrac{7( \sqrt{5}  +  \sqrt{2}) }{3}

__________________________

To Do :-

  • Rationalise the Denominator.

__________________________

Step By Step Solution :-

 \implies \cfrac{7}{ \sqrt{5} -  \sqrt{2}  }  \\  \\  \implies \cfrac{7}{ \sqrt{5}  -  \sqrt{2} }  \times  \frac{ \sqrt{5}  +  \sqrt{2} }{ \sqrt{5} +  \sqrt{2}  }  \\  \\  \implies \cfrac{7( \sqrt{5} +  \sqrt{2})  }{ { (\sqrt{5}) }^{2} -  {( \sqrt{2 )} }^{2}  }   \\  \\  \implies \cfrac{7( \sqrt{5}  +  \sqrt{2}) }{5 - 2}  \\  \\  \implies \cfrac{7( \sqrt{5}  +  \sqrt{2}) }{3}

Therefore \implies \cfrac{7( \sqrt{5}  +  \sqrt{2}) }{3} is the correct answer

Hence Rationalised.

__________________________

Formula Used :-

  • ( x - y ) ( x + y ) = x² - y²

__________________________

Similar questions