Math, asked by HACKER009, 1 month ago

rationalize the denominator ​

Attachments:

Answers

Answered by sandy1816
2

Answer:

Your answer attached in the photo

Attachments:
Answered by Salmonpanna2022
3

Step-by-step explanation:

1st Question:

Given:-

 \frac{ \sqrt{3}  + 1}{2 \sqrt{2} -  \sqrt{3}  }  \\  \\

What to do:-

To rationalise the denominator.

Solution:-

Let's solve the problem,

we have

 \frac{ \sqrt{3}  + 1}{2 \sqrt{2} -  \sqrt{3}  }  \\

✯The denominator is 2√2-√3. Multiplying the numerator and denominator by 2√2+√3. We get,

⟹ \frac{ \sqrt{3} + 1 }{2 \sqrt{2} -  \sqrt{3}  }  \times  \frac{2 \sqrt{2}   +   \sqrt{3} }{2 \sqrt{2}  +  \sqrt{3} }  \\  \\

⟹ \frac{( \sqrt{3}  + 1)(2 \sqrt{2}  +  \sqrt{3}) }{(2 \sqrt{2}  -  \sqrt{3} )(2 \sqrt{2} +  \sqrt{3} ) }  \\

⬤ Applying Algebraic Identity

(a-b)(a+b) = a² - b² to the denominator

We get,

⟹ \frac{({ \sqrt{3} + 1)(2 \sqrt{2}  +  \sqrt{3})  } }{(2 \sqrt{2} {)}^{2}   - ( \sqrt{3} {)}^{2}  }  \\  \\

⟹ \frac{( \sqrt{3}  + 1)(2 \sqrt{2} +  \sqrt{3}  )}{8 - 3}  \\  \\

⟹ \frac{( \sqrt{3}  + 1)(2 \sqrt{2}  +  \sqrt{3} )}{5}  \\

Now,

Multiplying the expressions in the numerator left side to right side.

⟹ \frac{2 \sqrt{6} + 3 + 2 \sqrt{2}   +  \sqrt{3} }{5}  \\

Hence, the denominator is rationalised.

Answer:-

 \frac{2 \sqrt{6} + 3 + 2 \sqrt{2}   +  \sqrt{3} }{5}  \\

Used Formulae:-

(a-b)(a+b) = a² - b²

2nd Question:

Given:

Now,

(3√2 + 1)/(2√5 - 3)

We rationalize the denominator by multiplying both the numerator and the denominator by conjugate rational number (2√5 + 3)

Then,

(3√2 + 1)/(2√5 - 3)

= {(3√2 + 1)(2√5 + 3)}/{(2√5 - 3)(2√5 + 3)}

= (6√10 + 9√2 + 2√5 + 3)/(20 - 9)

= (6√10 + 9√2 + 2√5 + 3)/11,

which is the required value.

In attachment I have answered this problem.⤴️⬆️

:)

Attachments:
Similar questions
Science, 1 month ago