Math, asked by vp10052, 8 months ago

rationalize the denominator 5/2√3-√2 ​

Answers

Answered by Glorious31
47

We have been asked to rationalise the denominator of :

 \large{ \sf{ \dfrac{5}{2 \sqrt{3} -  \sqrt{2}  }}}

For that we need to follow up the given steps :

  1. Check the sign in the denominator .
  2. Take the opposite sign of the denominator with same numbers and multiply it with both the numerator and denominator
  3. This creates an identity : (a+b)(a-b)
  4. Simplify according to the identity .

Following the above steps ; the solution is this way :

S O L U T I O N :

  \longrightarrow{ \sf{ \dfrac{5}{2 \sqrt{3} -  \sqrt{2}  } }} \times  \dfrac{2 \sqrt{3} +  \sqrt{2}  }{2 \sqrt{3}  +  \sqrt{2} }

  \longrightarrow{ \sf{ \dfrac{5(2 \sqrt{3} +  \sqrt{2})  }{ {2 \sqrt{3} }^{2}  -   { \sqrt{2} }^{2} } }}

  \longrightarrow{ \sf{ \dfrac{5(2 \sqrt{3} +  \sqrt{2})  }{(2 \times 2 \times 3) - 2} }}

  \longrightarrow{ \sf{ \dfrac{5( 2 \sqrt{3}  +  \sqrt{2}) }{12 - 2} }}

  \longrightarrow{ \sf{ \dfrac{5( 2 \sqrt{3}  +  \sqrt{2})}{ 10} }}

So ; when denominator is rationalised :

  \longrightarrow{ \sf{ \dfrac{5( 2 \sqrt{3}  +  \sqrt{2})}{10} }}

Answered by Anonymous
86

Questions

✩✩✩✩✩✩

rationalize \:  the \:  denominator \:  5/2√3-√2

✩ S O L U T I O N :✩

\longrightarrow{ \sf{ \dfrac{5}{2 \sqrt{3} - \sqrt{2} } }} \times \dfrac{2 \sqrt{3} + \sqrt{2} }{2 \sqrt{3} + \sqrt{2} }

\longrightarrow{ \sf{ \dfrac{5(2 \sqrt{3} + \sqrt{2}) }{ {2 \sqrt{3} }^{2} - { \sqrt{2} }^{2} } }}

\longrightarrow{ \sf{ \dfrac{5(2 \sqrt{3} + \sqrt{2}) }{(2 \times 2 \times 3) - 2} }}

\longrightarrow{ \sf{ \dfrac{5( 2 \sqrt{3} + \sqrt{2}) }{12 - 2} }}

\longrightarrow{ \sf{ \dfrac{5( 2 \sqrt{3} + \sqrt{2})}{ 10} }}

So ; when denominator is rationalised :

 \longrightarrow{ \sf{ \dfrac{5( 2 \sqrt{3} + \sqrt{2})}{10} }}

Similar questions