Math, asked by rahul5362IAF, 1 year ago

rationalize the denominator 5 minus 3 root 14 upon 7 + 2 root 14​

Answers

Answered by harendrachoubay
49

The rationalization of \dfrac{5-3\sqrt{14}}{7+2\sqrt{14}} is equal to 31 + \dfrac{31\sqrt{14}}{7}.

Step-by-step explanation:

We have,

\dfrac{5-3\sqrt{14}}{7+2\sqrt{14}}

To find, the rationalization of \dfrac{5-3\sqrt{14}}{7+2\sqrt{14}} = ?

\dfrac{5-3\sqrt{14}}{7+2\sqrt{14}}

The rationalizing numerator and denominator, we get

=\dfrac{5-3\sqrt{14}}{7+2\sqrt{14}}\times \dfrac{7-2\sqrt{14}}{7-2\sqrt{14}}

Using the algebraic identity,

a^{2} -b^{2} =(a+b)(a-b)

=\dfrac{(5-3\sqrt{14})(7-2\sqrt{14})}{7^2-(2\sqrt{14})^2}

=\dfrac{35-10\sqrt{14}-21\sqrt{14}+6\times 14}{49-4(14)}

=\dfrac{35-31\sqrt{14}+84}{49-56}

=\dfrac{119-31\sqrt{14}}{-7}

=\dfrac{119}{-7}+\dfrac{-31\sqrt{14}}{-7}

= 31 + \dfrac{31\sqrt{14}}{7}

∴  The rationalization of \dfrac{5-3\sqrt{14}}{7+2\sqrt{14}} = 31 + \dfrac{31\sqrt{14}}{7}

Thus, the rationalization of \dfrac{5-3\sqrt{14}}{7+2\sqrt{14}} is equal to 31 + \dfrac{31\sqrt{14}}{7}.

Answered by rakhiojha97
26

Answer:

5-3√14 \ 7+2√14

5-3√14 \ 7+2√14×7-2√14 / 7-2√14

(5-3√14) (7-2√14) / (7)^2-(2√14)^2

35-10√14-21√14+6×14 / 35-31√14+84 / -7

119-31√14 / -7

so, friends ans is finish here

#hope you would be agree with my answer

#please like and follow me tooooo

Similar questions