Math, asked by highnessishakhatri, 7 months ago

rationalize the denominator 7/3 √3-2 √2

Answers

Answered by Anonymous
10

Given:

  \sf\to\dfrac{7}{3 \sqrt{3} - 2 \sqrt{2} }

Find:

➝ Rationalise the denominator.

Solution:

  \sf\to\dfrac{7}{3 \sqrt{3} - 2 \sqrt{2}}

  \sf := \dfrac{7}{3 \sqrt{3} - 2 \sqrt{2}} \times  \dfrac{3 \sqrt{3} + 2 \sqrt{2}  }{3 \sqrt{2} + 2 \sqrt{2}  }

using identity :-

(a+b) (a-b) = a² - b²

So,

  \sf := \dfrac{7(3 \sqrt{3} + 2 \sqrt{2})}{ {(3 \sqrt{3} )}^{2}  -  {(2 \sqrt{2})}^{2} }

  \sf := \dfrac{7 \times 3 \sqrt{3} + 7 \times 2 \sqrt{2}}{(9 \times 3) - (4 \times 2)}

  \sf := \dfrac{21\sqrt{3}  + 14\sqrt{2}}{(9 \times 3) - (4 \times 2)}

  \sf := \dfrac{21\sqrt{3}  + 14\sqrt{2}}{(27 - 8)}

  \sf := \dfrac{21\sqrt{3}  + 14\sqrt{2}}{19}

Hence, the rationalized denomiator is 19

Answered by prince5132
8

GIVEN :-

  • 7/(3√3 - 2√2).

TO FIND :-

  • The rationalize form of 7/(3√3 - 2√2).

SOLUTION :-

 \\ \underline{\boldsymbol{According\: to \:the\: Question\:now :}} \\  \\

:  \implies \displaystyle \sf \:  \dfrac{7}{3 \sqrt{3}  - 2 \sqrt{2} } \\  \\  \\

:  \implies \displaystyle \sf \: \dfrac{7}{3 \sqrt{3}  - 2 \sqrt{2} }  \times  \frac{3 \sqrt{3}   +  2 \sqrt{2} }{3 \sqrt{3} + 2 \sqrt{2}  }  \\  \\  \\

:  \implies \displaystyle \sf \:  \dfrac{7 \bigg(3 \sqrt{3}  + 2 \sqrt{2 } \bigg) }{ \bigg(3 \sqrt{3}  - 2 \sqrt{2} \bigg) \bigg(3 \sqrt{3}  + 2 \sqrt{2} \bigg)  } \\  \\  \\

 \dag \displaystyle  \rm \: using \:  identity : (a + b)(a - b) = a^{2} - b^{2} \\  \\  \\

:  \implies \displaystyle \sf \:   \frac{21 \sqrt{3}  + 14 \sqrt{2} }{ \bigg(3 \sqrt{3} \bigg) ^{2}   -  \bigg(2 \sqrt{2} \bigg) ^{2}  }  \\  \\  \\

:  \implies \displaystyle \sf \:   \frac{21 \sqrt{3}  + 14 \sqrt{2} }{9 \sqrt{9}  - 4 \sqrt{4} }  \\  \\  \\

:  \implies \displaystyle \sf \:   \frac{21 \sqrt{3} + 14 \sqrt{2}  }{9 \times 3 - 4 \times 2}  \\  \\  \\

:  \implies \displaystyle \sf \:   \frac{21 \sqrt{3}  + 14 \sqrt{2} }{27 - 8}  \\  \\  \\

:  \implies \displaystyle \sf \:   \frac{21 \sqrt{3}  + 14 \sqrt{2} }{19} \\ \\

\therefore \underline {\displaystyle \sf required \  answer \  is \ \frac{21 \sqrt{3}  + 14 \sqrt{2} }{19}} \\ \\

Similar questions