Rationalize the denominator of 1/√2+√3+√5
Answers
Answered by
2
Hi friend!!
1/(√2+√3+√5)
→ 1/(√2+√3+√5) × (√2+√3-√5)/(√2+√3-√5)
→ (√2+√3-√5)/(√2+√3+√5)(√2+√3-√5)
→ (√2+√3-√5)/{(√2+√3)²-(√5)²}
→ (√2+√3-√5)/{√2²+√3²+2(√2)(√3) - 5}
→ (√2+√3-√5)/{2+3+2√6 - 5}
→ (√2+√3-√5)/2√6
The denominator is still irrational.
So we have to rationalise it further.
→ (√2+√3-√5)/2√6 × √6/√6
→ √6(√2+√3-√5)/2(√6)²
→ √12+√18-√30/2(6)
→ √4×3 + √9×2 - √30/12
→ (2√3+3√2-√30)/12
Hope it helps...
1/(√2+√3+√5)
→ 1/(√2+√3+√5) × (√2+√3-√5)/(√2+√3-√5)
→ (√2+√3-√5)/(√2+√3+√5)(√2+√3-√5)
→ (√2+√3-√5)/{(√2+√3)²-(√5)²}
→ (√2+√3-√5)/{√2²+√3²+2(√2)(√3) - 5}
→ (√2+√3-√5)/{2+3+2√6 - 5}
→ (√2+√3-√5)/2√6
The denominator is still irrational.
So we have to rationalise it further.
→ (√2+√3-√5)/2√6 × √6/√6
→ √6(√2+√3-√5)/2(√6)²
→ √12+√18-√30/2(6)
→ √4×3 + √9×2 - √30/12
→ (2√3+3√2-√30)/12
Hope it helps...
Similar questions
Math,
8 months ago
Math,
8 months ago
Science,
8 months ago
Social Sciences,
1 year ago
English,
1 year ago