Math, asked by bhullarsukhleen90, 8 months ago

rationalize the denominator of (√3+√2) by (√3-√2)​

Answers

Answered by Anonymous
23

\bf\small\green{\underline{ }} \frac{ \sqrt{3}  +  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }  \\  \\ \bf\small\green{\underline{ }}multiplying \: numerator \: and \: denominator \\ \bf\small\green{\underline{ }}by \: ( \sqrt{3}  +  \sqrt{2} ) \\  \\   =  >  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2}  }  \times  \frac{ \sqrt{3} +  \sqrt{2}  }{ \sqrt{3}  +  \sqrt{2} }  \\  \\ \bf\small\green{\underline{ }} =  >  \frac{ {( \sqrt{3} +  \sqrt{2} ) }^{2} }{( \sqrt{3}   -   \sqrt{2}  )( \sqrt{3} +  \sqrt{2} ) }  \\  \\ \bf\small{\underline{ (a + b)(a - b) =  {a}^{2}  -  {b}^{2} }} \\ .....a =  \sqrt{3}  \:  \:  \:  \:  \:  \:  \:  \:  \: b =  \sqrt{2}  \\   \\  \bf\small{\underline{( {a + b)}^{2} =  {a}^{2} + 2ab +  {b}^{2}    }}  \\ .....a =  \sqrt{3}  \:  \:  \:  \:  \:  \:  \:  \: b =  \sqrt{2}  \\  \\  =  > \bf\small\green{\underline{ }} \frac{ ( { \sqrt{3}) }^{2}   + 2( \sqrt{3})( \sqrt{2} ) + ( { \sqrt{2}) }^{2}  }{ { (\sqrt{3}) }^{2} -  { (\sqrt{2} )}^{2}  }  \\  \\  =  > \bf\small\green{\underline{ }} \frac{3 + 2 \sqrt{6}  + 2}{3 - 2}  \\  \\ \bf\small\green{  =  > 5 + 2 \sqrt{6} }

Similar questions