Math, asked by remayangchin, 4 months ago

Rationalize the denominator of √3-√4/√3+√4-√7

Answers

Answered by ab548
0

Answer:  \frac{-1-\sqrt{21}+\sqrt{28}   }{2\sqrt{12} }

PLEASE MARK  MY  ASWER  AS BRAINLIEST  !

Step-by-step explanation:

\frac{\sqrt{3} -\sqrt{4} }{\sqrt{3}+\sqrt{4} - \sqrt{7} }

\frac{\sqrt{3} -\sqrt{4} }{\sqrt{3}+\sqrt{4} - \sqrt{7} }*\frac{\sqrt{3} +\sqrt{4}+\sqrt{7}  }{\sqrt{3}+\sqrt{4} + \sqrt{7} }

\frac{(\sqrt{3} -\sqrt{4})(\sqrt{3}+\sqrt{4}  - \sqrt{7}) }{(\sqrt{3}+\sqrt{4})^{2}  - (\sqrt{7})^{2}  }

\frac{3-\sqrt{12}+\sqrt{12}-4-\sqrt{21}+\sqrt{28}   }{3+4+2\sqrt{3}.\sqrt{4} - 7 }

\frac{-1-\sqrt{21}+\sqrt{28}   }{2\sqrt{12} }

Similar questions