rationalize the denominator:
Answers
Answered by
1
Hi ,
1/( 1 + √5 + √3 )
= ( 1 + √5 - √3 )/[(1+√5+√3)(1+√5-√3)]
= ( 1 + √5 - √3 )/[ ( 1 + √5 )² - ( √3 )² ]
= ( 1 + √5 - √3 )/[ 1 + 5 +2√5 - 3 ]
= ( 1 + √5 - √3 )/[ 3 + 2√5 ]
= [(1+√5-√3)(2√5 - 3 )]/[(2√5+3)(2√5-3)]
= [2√5+10-3√5-3-3√5+3√3]/[(2√5)²-3²]
= ( 7 - 4√5 +3√3 )/( 20 - 9 )
= ( 7 - 4√5 + 3√3 )/11
I hope this helps you.
: )
1/( 1 + √5 + √3 )
= ( 1 + √5 - √3 )/[(1+√5+√3)(1+√5-√3)]
= ( 1 + √5 - √3 )/[ ( 1 + √5 )² - ( √3 )² ]
= ( 1 + √5 - √3 )/[ 1 + 5 +2√5 - 3 ]
= ( 1 + √5 - √3 )/[ 3 + 2√5 ]
= [(1+√5-√3)(2√5 - 3 )]/[(2√5+3)(2√5-3)]
= [2√5+10-3√5-3-3√5+3√3]/[(2√5)²-3²]
= ( 7 - 4√5 +3√3 )/( 20 - 9 )
= ( 7 - 4√5 + 3√3 )/11
I hope this helps you.
: )
Similar questions