Math, asked by ikhankarpranit, 1 month ago

Rationalize the denominator
 \frac{3}{2 \sqrt{5} - 3 \sqrt{2} }
Please answer step by step​

Answers

Answered by senboni123456
4

Step-by-step explanation:

We have,

 \tt{ \dfrac{3}{2 \sqrt{5} - 3 \sqrt{2} } }

 \tt{ =  \dfrac{3( 2 \sqrt{5}  +  3 \sqrt{2} )}{(2 \sqrt{5} - 3 \sqrt{2} )( 2 \sqrt{5}  + 3 \sqrt{2} )} }

 \tt{ =  \dfrac{3( 2 \sqrt{5}  +  3 \sqrt{2} )}{(2 \sqrt{5} )^{2} -( 3 \sqrt{2} )^{2} } }

 \tt{ =  \dfrac{3( 2 \sqrt{5}  +  3 \sqrt{2} )}{20 -18 } }

 \tt{ =  \dfrac{3( 2 \sqrt{5}  +  3 \sqrt{2} )}{2} }

Answered by UserUnknown57
1

Answer:

Step-by-step explanation:

\Large{\mathsf{\frac{3}{2 \sqrt{5} - 3 \sqrt{2}}}}

\Large{\mathsf{ \frac{3}{2 \sqrt{5} - 3 \sqrt{2}} \times  \frac{2 \sqrt{5} + 3 \sqrt{2}  }{2 \sqrt{5} + 3 \sqrt{2} } }}

\Large{\mathsf{   \frac{6 \sqrt{5}  + 9 \sqrt{2} }{ {(2 \sqrt{5}) }^{2}  -  {( 3 \sqrt{2} )}^{2} } }}

\Large{\mathsf{  \frac{6 \sqrt{5} + 9 \sqrt{2}  }{20 - 18}    }}

\Large{\mathsf{   \frac{6 \sqrt{5}  + 9 \sqrt{2} }{2}   }}

Similar questions