Math, asked by Anonymous, 1 month ago


Rationalize the denominator.

 \huge \tt \frac{3}{ 2\sqrt{5}  - 3 \sqrt{2}}

Answers

Answered by Anonymous
22

    \dfrac{6 \sqrt{5}  + 9 \sqrt{2} }{2}

Step-by-step explanation:

 \displaystyle{\frac{3}{ 2\sqrt{5} - 3 \sqrt{2}}}

 = \dfrac{3}{ 2\sqrt{5} - 3 \sqrt{2}}\times  \dfrac{2\sqrt{5}  +  3 \sqrt{2}}{2\sqrt{5}  + 3 \sqrt{2}}

=   \dfrac{3(2 \sqrt{5}  + 3 \sqrt{2} )}{(2 \sqrt{5}   -  3 \sqrt{2})(2 \sqrt{5}  + 3 \sqrt{2})}

=  \dfrac{6 \sqrt{5}  + 9 \sqrt{2} }{(2 \sqrt{5} ) ^{2} - (3 \sqrt{2}) ^{2}   }   \qquad   \sf\purple{[ {(a + b)(a - b) =  {a}^{2}  -  {b}^{2} }]}

  =  \dfrac{6 \sqrt{5}  + 9 \sqrt{2} }{20 - 18}

  =  \dfrac{6 \sqrt{5}  + 9 \sqrt{2} }{2}

\\

\green{\underline{\pink{\boxed{\blue{\bf{\therefore \dfrac{3}{ 2\sqrt{5} - 3 \sqrt{2}} = \dfrac{6 \sqrt{5}  + 9 \sqrt{2} }{2} }}}}}}

\\

Concepts Used :-

1. Some algebraic identities

  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab
  • (a + b) (a - b) = a² - b²

2. Multiply both numerator as well as denominator by conjugate pair.

Answered by Anonymous
25

Answer:

refer to the above attachment

Attachments:
Similar questions