Math, asked by Anonymous, 1 month ago


Rationalize the denominator.

 \huge \tt \frac{ \sqrt{5}  -  \sqrt{3}} { \sqrt{5}   +  \sqrt{3}}

Answers

Answered by Anonymous
30

Answer:

refer to the above attachment

Attachments:
Answered by IIMrVelvetII
9

The rationalized value of \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} is \bold{4+\sqrt{15}}

Step-by-step explanation:

To rationalize \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} multiply up and down by (\sqrt{5}+\sqrt{3}).

Therefore it becomes,

\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}} \times \frac{\sqrt{5}+\sqrt{3}}{\sqrt{5} + \sqrt{3}}

By formula,  \sf \fbox \orange{x^{2}-y^{2}=(x+y)(x-y)}, substitute the formula in the above equation,  

Hence the equation becomes,

 =  \frac{ { (\sqrt{5} +  \sqrt{3})}^{2} }{(\sqrt{5} - \sqrt{3})(\sqrt{5} +  \sqrt{3})}

  = \frac{ {(\sqrt{5})}^{2} +  {(\sqrt{3})}^{2} +2( \sqrt{5})( \sqrt{3} )}{( { \sqrt{5})}^{2} - ( { \sqrt{3})}^{2}}

 =  \frac{5 + 3 + 2 \sqrt{15} }{5 - 3}

 =  \frac{8 + 2 \sqrt{15} }{2}

 =  \frac{4 \sqrt{15} }{1}

\fbox \orange{= 4 \sqrt{15}}

Learn more on brainly :-

Rationalizing Question/Answer ⤵️

  • https://brainly.in/question/43298648

  • https://brainly.in/question/43191745

Hope it helps ✌

 \huge\fbox \green{ \sf Thank You!!!}

Similar questions