Math, asked by joeldebbarma123, 7 months ago

rationalize the denominator7/5✓2-3√3​

Answers

Answered by mathdude500
1
Please find the attachment
Attachments:
Answered by Anonymous
3

\bigstar Question:

Rationalise the denominator:

  •  \frac{7}{5 \sqrt{2} - 3 \sqrt{3}  }

\bigstarGiven:

  •  \frac{7}{5 \sqrt{2} - 3 \sqrt{3}  }

\bigstarTo find:

To Rationalise the denominator of :

\frac{7}{5 \sqrt{2} - 3 \sqrt{3}  }

\bigstar Solution:

\frac{7}{5 \sqrt{2} - 3 \sqrt{3}  }

 =  \frac{7 \times (5 \sqrt{2}  + 3 \sqrt{3} )}{(5 \sqrt{2}  - 3 \sqrt{3} )(5 \sqrt{2} + 3 \sqrt{3})  }

 =  \frac{(7 \times 5 \sqrt{2}) + (7 \times 3 \sqrt{3} ) }{ {(5 \sqrt{2}) }^{2}   -  {(3 \sqrt{3}) }^{2} }

( By using (a+b)(a-b) = - )

 =  \frac{(35 \sqrt{2} + 21 \sqrt{3}) }{(5 \times 5 \times  \sqrt{2 }\times  \sqrt{2} )(3 \times 3 \times  \sqrt{3} \times  \sqrt{3} )  }

 =  \frac{35 \sqrt{2}  + 21 \sqrt{3} }{(25 \times 2) - (9 \times 3)}

 =  \frac{(35 \sqrt{2} + 21 \sqrt{3})  }{50 - 27}

 =  \frac{35 \sqrt{2}  + 21 \sqrt{3} }{23}

\bigstarAnswer:

  \frac{35 \sqrt{2}  + 21 \sqrt{3} }{23}

=  \frac{ 7 (5\sqrt{2} + 3 \sqrt{3})}{23}

\blacksquare Formulas used:

  • ( a + b ) ( a - b ) = a² - b²
  • √a × √a = a
Similar questions