Math, asked by saurabhkumar34, 1 year ago

rationalize under root 2 by under root 5 + under root 7​

Answers

Answered by Anonymous
2

Answer:

 \frac{ \sqrt{2} }{ \sqrt{5} +  \sqrt{7}  }  \times  \frac{ \sqrt{2} }{ \sqrt{5} -  \sqrt{7}  }  \\  \\  =  \geqslant (a + b) \:  \: (a - b) =  {a}^{2}  \:  -  {b}^{2}  \\  \\  =  \geqslant   \sqrt{2}  \times  \sqrt{2 }  = 2 \\  \\  =  \geqslant  \frac{ \sqrt{2} }{ \sqrt{5 +  \sqrt{7} } }  \times   \frac{ \sqrt{2} }{ \sqrt{5}  -  \sqrt{7} }  \\  \\  =  \geqslant  \frac{2}{( \sqrt{5}) {}^{2}  - ( \sqrt{7} ) {}^{2}  }  \\  \\  =  \geqslant  \frac{2}{5 - 7}  \\  \\  =  \geqslant  \frac{2}{ - 2}  \\  \\  =  \geqslant  - 1

Similar questions