Math, asked by Agalyaraman, 1 year ago

rationalize √x+√y÷√x-√y​

Answers

Answered by adarsh3385
1

Answer:

please mark it as brainliest follow me back

Attachments:
Answered by Anonymous
9

Answer :-

 \bf \dfrac{x + y + 2 \sqrt{xy} }{x - y}

Solution :-

 \sf  \dfrac{ \sqrt{x} +  \sqrt{y} }{ \sqrt{x} -  \sqrt{y}  }

The rationalising factor of √x - √y is √x + √y. So, multiply both numerator and denominator by rationalising factor

 \sf   = \dfrac{ \sqrt{x} +  \sqrt{y} }{ \sqrt{x} -  \sqrt{y}} \times \dfrac{ \sqrt{x} +  \sqrt{y} }{ \sqrt{x}  +  \sqrt{y}}

 \sf   = \dfrac{ (\sqrt{x} +  \sqrt{y})^2}{ (\sqrt{x})^{2}  -  (\sqrt{y})^{2} }

[Since (a + b)(a - b) = a² - b² ]

 \sf   = \dfrac{ (\sqrt{x} +  \sqrt{y})^2}{x - y}

 \sf   = \dfrac{ (\sqrt{x})^2 +  {( \sqrt{y})}^{2} + 2( \sqrt{x})( \sqrt{y})}{x - y}

[Since (a + b)² = a² + b² + 2ab]

 \sf   = \dfrac{x + y + 2 \sqrt{x \times y} }{x - y}

 \sf   = \dfrac{x + y + 2 \sqrt{xy} }{x - y}

Identities used :-

• (a + b)(a - b) = a² - b²

• (a + b)² = a² + b² + 2ab

Similar questions