Math, asked by shraddhabhure7609, 1 year ago

rationaloze √6+√3/√6-√3where √2=1.44

Answers

Answered by ihrishi
0

Answer:

 \frac{ \sqrt{6}  +  \sqrt{3} }{ \sqrt{6} -  \sqrt{3}  }  = \frac{ \sqrt{6}  +  \sqrt{3} }{ \sqrt{6} -  \sqrt{3}  } \times \frac{ \sqrt{6}  +  \sqrt{3} }{ \sqrt{6}  +   \sqrt{3}  } \\  =  \frac{( \sqrt{6}  +  \sqrt{3}) ^{2}  }{ { \sqrt{6} }^{2}  -  { \sqrt{3} }^{2} }  \\  =  \frac{ { (\sqrt{6}) }^{2} + ( { \sqrt{3} })^{2}  + 2 \times  \sqrt{6}  \times  \sqrt{3}}{6 - 3}  \\  =  \frac{6 + 3 + 2 \sqrt{18} }{3}  \\  =  \frac{9 + 2 \sqrt{9 \times 2} }{3}  \\  =  \frac{9 + 2 \times 3 \sqrt{2} }{3}  \\  =  \frac{9 + 6 \sqrt{2} }{3}  \\  =  \frac{3(3 + 2 \sqrt{2)} }{3}  \\  = 3 + 2 \sqrt{2}  \\  = 3 + 2 \times 1.414 \\  = 3 + 2.828 \\  = 5.828 \:  \:  \: ( \because \:  \sqrt{2}  = 1.414)

Similar questions