Math, asked by jaswalrishav4, 7 months ago

Rationlise the denominator 3/9-3√2​

Answers

Answered by varadad25
10

Answer:

The rationalised denominator of the given fraction is

\displaystyle\boxed{\red{\sf\:\dfrac{3\:+\:\sqrt{2}}{7}}}

Step-by-step-explanation:

We have to rationalise the given fraction.

\displaystyle\sf\:\dfrac{3}{9\:-\:3\:\sqrt{2}}

Now,

\displaystyle\sf\:\dfrac{3}{9\:-\:3\:\sqrt{2}}

\displaystyle\implies\sf\:\dfrac{3}{9\:-\:3\:\sqrt{2}}\:\times\:\dfrac{9\:+\:3\:\sqrt{2}}{9\:+\:3\:\sqrt{2}}

\displaystyle{\implies\sf\:\dfrac{27\:+\:9\:\sqrt{2}}{\:(\:9\:)^2\:-\:(\:3\:\sqrt{2}\:)^2}\:\:\:-\:-\:[\:(\:a\:+\:b\:)\:(\:a\:-\:b\:)\:=\:a^2\:-\:b^2\:]}

\displaystyle{\implies\sf\:\dfrac{27\:+\:9\:\sqrt{2}}{9\:\times\:9\:-\:3\:\times\:3\:\times\:\sqrt{2}\:\times\:\sqrt{2}}}

\displaystyle\implies\sf\:\dfrac{27\:+\:9\:\sqrt{2}}{81\:-\:9\:\times\:2}

\displaystyle\implies\sf\:\dfrac{27\:+\:9\:\sqrt{2}}{81\:-\:18}

\displaystyle\implies\sf\:\dfrac{27\:+\:9\:\sqrt{2}}{63}

\displaystyle\implies\sf\:\dfrac{\cancel{9}\:(\:3\:+\:\sqrt{2}\:)}{\cancel{63}}

\displaystyle\implies\boxed{\red{\sf\:\dfrac{3\:+\:\sqrt{2}}{7}}}

─────────────────────

Additional Information:

1. Rationalised denominator:

When the denominator of a fraction is a rational number, then the denominator of the fraction is called rationalised denominator.

2. Rationalisation of denominator:

To rationalise the denominator of a fraction, we have to multiply both numerator and denominator by the conjugate pair of denominator.

3. Conjugate pair:

If the given number is sum of two numbers, then its conjugate pair is subtraction of those two numbers.

For example,

The conjugate pair of  \displaystyle\boxed{\red{\sf{4\:+\:\sqrt{5}}}} is \displaystyle\boxed{\red{\sf{4\:-\:\sqrt{5}}}}.

Answered by Anonymous
9

Answer:

ANSWER :

The rationalised form of   \dfrac{3}{9 \:  -  \: 3 \sqrt{2} } is   \dfrac{3 \:  +  \:  \sqrt{2} }{7} .

Step-by-step explanation:

QUESTION :

Rationlise the denominator   \dfrac{3}{9 \:  -  \: 3 \sqrt{2} } .

 \\

CONCEPT USED :

  • (a + b) (a - b) = a² - b²
  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab

 \\

SOLUTION :

  \frac{3}{9 \:  -  \: 3 \sqrt{2} }  \\  \\  =  \:   \frac{3}{9 \:  -  \: 3 \sqrt{2} }  \:  \times  \:  \frac{9 \:   +   \: 3 \sqrt{2} }{9 \:  +  \: 3 \sqrt{2} }  \\  \\  = \:   \frac{3(9 + 3 \sqrt{2})  }{(9 \: -  \:  3 \sqrt{2} ) \: (9 \:  +  \: 3 \sqrt{2}) }  \\  \\  =  \:  \frac{27 \:  +  \: 9 \sqrt{2} }{  ({9}^{2} ) \:  - \: (3 \sqrt{2})^{2}    }  \\  \\  =  \:  \frac{27 \:  +  \: 9 \sqrt{2} }{81 \:  - (3 \times 3 \times  \:  \sqrt{2} \times  \sqrt{2} ) }  \\  \\  =  \frac{27 \:  +  \: 9 \sqrt{2} }{81 \:  -  \: (9 \:  \times  \: 2)}  \\  \\  =  \frac{27 \:  +  \: 9 \sqrt{2} }{81 \:  -  \: 18}  \\  \\  =  \frac{27 \:  +  \: 9 \sqrt{2} }{63}  \\  \\  =  \frac{9(3 \:  +  \:  \sqrt{2}) }{9 \:  \times  \: 7}  \\  \\  =  \: \frac{ \not \cancel9(3 \:  +  \:  \sqrt{2}) }{ \not \cancel9 \:  \times  \: 7}  \\  \\ =   \:  \frac{3 \:  +  \:  \sqrt{2} }{7}

 \\

ANSWER :

The rationalised form of   \dfrac{3}{9 \:  -  \: 3 \sqrt{2} } is   \dfrac{3 \:  +  \:  \sqrt{2} }{7} .

 \\

HOPE IT HELPS YOU !

THANKS !

Similar questions