Math, asked by namanrana1000p9agct, 1 year ago

ratonalize 5√3+2√5÷5√3-2√5

Answers

Answered by abhi569
3

 \frac{5 \sqrt{3}  + 2 \sqrt{5} }{5 \sqrt{3}  - 2 \sqrt{5} }


By Rationalization,


 \frac{5 \sqrt{3} + 2 \sqrt{5}  }{5 \sqrt{3} - 2 \sqrt{5}  }  \times  \frac{5 \sqrt{3} + 2 \sqrt{5}  }{5 \sqrt{3}  - 2 \sqrt{5} }   \\  \\  \\  \\  \\  =>  \frac{ {(5 \sqrt{3} + 2 \sqrt{5} ) }^{2} }{(5 \sqrt{2}  - 2 \sqrt{5})(5 \sqrt{2}   + 2 \sqrt{5} )}



We know, (a + b)(a - b) = a² - b²


Applying formula in denominator , we get




 \frac{ {(5 \sqrt{3}) }^{2} +  {(2 \sqrt{5} )}^{2}  + 2(5 \sqrt{3 }   \times 2 \sqrt{5} )}{ {(5 \sqrt{3} )}^{2} -  {(2 \sqrt{5}) }^{2}  }  \\  \\  \\  \\  =>  \frac{75 + 20 + 20 \sqrt{15} }{75 - 20}  \\  \\  \\  \\  \\  \\   =>  \frac{95 + 20 \sqrt{15} }{55}  \\  \\  \\  \\  =>  \frac{19 + 4 \sqrt{15} }{11}


Answered by Anonymous
4
Hey friend !!!!!

•°• Here's your answer •°•

que =  \frac{5 \sqrt{3}  + 2 \sqrt{5} }{5 \sqrt{3}  - 2 \sqrt{5} }  \\  \\  =  \frac{5 \sqrt{3}  + 2 \sqrt{5} }{5 \sqrt{3} - 2 \sqrt{5}  }  \times  \frac{5 \sqrt{3}  + 2 \sqrt{5} }{5 \sqrt{3} + 2 \sqrt{5}  }  \\  \\  now \:  \: we \:  \: have \:  \: to \:  \: use \:  \: the \:  \: identities \:  \: here  \\  \\  =(a + b)(a + b) =  {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab \\ and \\  = (a - b)(a + b) =  {a}^{2} -  {b}^{2}   \\  \\  =  \frac{ {(5 \sqrt{3} + 2 \sqrt{5})  }^{2} }{ {(5 \sqrt{3}) }^{2}  -  {(2 \sqrt{5}) }^{2} }   \\  \\  =   \frac{ {(5 \sqrt{3})  }^{2}  +  {(2 \sqrt{5}) }^{2} + 2 \times 5 \sqrt{3}  \times 2 \sqrt{5}  }{75 - 20}  \\  \\  =  \frac{75 + 20 + 20 \sqrt{15} }{55}  \\  \\  =  \frac{95 + 20 \sqrt{15} }{55}  \\  \\  =  \frac{19 + 4 \sqrt{5} }{11}

If you feel any problem regarding the solution feel free to ask me in the comment section.

Hope it satisfies you ☆▪☆

Thanks ^_^

☆ Be Brainly ☆

S4MAEL: wow supprbb !! well done genius ^_^
Similar questions