recall pi , is defined as the ratio of the circumfrence (say c) of a circle to its diameter say(d) . that is pi = c/d . this seems to contradict the fact that pi is irrational number , how will u solve this contradiction ?
Answers
Answer:
Please mark this brainliest.....
Step-by-step explanation:
There is no contradiction:-
When we measure a length with scale or any other instrument, we only obtain an approximate rational value. We never obtain an exact value.
For this reason, we cannot say that either c or d is irrational.
Therefore, the fraction c/d is irrational. Hence, the value of pie is approximately equal to 22/7= 3.142857....
Therefore,pie is irrational.
When we measure a length with a scale or any other device, we only get an
approximate rational value.
Therefore we may not realise that c or d is irrational.
Circumference c or the perimeter of a circle is given by 2πr,
where r is the radius of the circle
π is approximated as 3.14 or 22 / 7
Also diameter(longest chord of circle) of the circle is equal to 2r.
Hence, c=(2πr),d=2r⇒ c/d = π
This is analogous to the approximated
value of 22/7 which though looks like a
rational number of the form p/ q (q!=0)
But when computed corresponds to a real value of ~3.14.
And real numbers consists of irrational numbers.
Hence, there is no contradiction in the
equation = c/d.