Math, asked by mujeebuddinahmed843, 3 months ago

recall the laws of exponent and apply the laws by taking few examples on your own​

Answers

Answered by bansalvidisha1
2

Answer:

HOPE THIS HELPS U

MARK MY ANSWER AS BRAINLIEST

Attachments:
Answered by IIRissingstarll
1

\huge\boxed{\fcolorbox{black}{pink}{Solution}}

\large{\underline{\sf{\pink{☆ \:  {a}^{m} \times  {a}^{n} \:  =  \:  {a}^{m + n}   }}}}

 {4}^{2}   \times  {4}^{3}  =  {4}^{2 + 3}  =  {4}^{5}

2. \:  {6}^{ - 4}  \times  {6}^{ - 3} =  {6}^{ - 4 + ( - 3)}   =  {6}^{ - 7}

\small{\underline{\sf{\pink{☆ \:  \frac{ {a}^{m} }{ {a}^{n} } =  {a}^{m - n}  }}}}

 \frac{ {9}^{5} }{ {9}^{3} }  =  {9}^{5 - 3}  =  {9}^{2}

\large{\underline{\sf{\pink{☆</p><p>  ({a^{m})^{n} } =  {a}^{mn}  }}}}

 { ({8}^{5}) }^{4}  =  {8}^{5 \times 4}  =  {8}^{20}

\large{\underline{\sf{\pink{☆ \: </p><p> {a}^{n} {b}^{n}   =  {(ab)}^{n}  }}}}

 {2}^{ - 3} \times  {6}^{ - 3}  =  {(2 \times 6)}^{ - 3}  =  {12}^{ - 3}

\large{\underline{\sf{\pink{☆ \:  \frac{ {a}^{n} }{ {b}^{n} }  =   ({ \frac{a}{b} )}^{n} </p><p> }}}}

 \frac{ {2}^{6} }{ {4}^{6} }  =  ({ \frac{2}{4} })^{6}  = ( { \frac{1}{2} })^{6}

\large{\underline{\sf{\pink{☆ \:  {a}^{0} = 1 }}}}

 {11}^{0}  = 1

\large{\underline{\sf{\pink{☆ \: a \times \frac{1}{n} \:  =  \:  \sqrt[n]{a}  }}}}

4 \times \frac{1}{2}  =  \sqrt[2]{4} = 2

\large{\underline{\sf{\pink{☆ \:  {a}^{ - 1}  =  \:  \frac{1}{a} }}}}

 1. \: {4}^{ - 1}  =  \frac{1}{4}

Similar questions