Rectangle ABCDABCDA, B, C, D is graphed in the coordinate plane. The following are the vertices of the rectangle: A(-6, -4),A(−6,−4),A, left parenthesis, minus, 6, comma, minus, 4, right parenthesis, comma B(-4,-4)B(−4,−4)B, left parenthesis, minus, 4, comma, minus, 4, right parenthesis, C(-4, -2)C(−4,−2)C, left parenthesis, minus, 4, comma, minus, 2, right parenthesis, and D(-6, -2)D(−6,−2)D, left parenthesis, minus, 6, comma, minus, 2, right parenthesis.
What is the perimeter of rectangle ABCDABCDA, B, C, D?
Answers
Answer with explanation:
The coordinates of vertices of Rectangle ABCD are ,A(-6,-4),B(-4,-4),C(-4,-2) and (-6,-2).
Distance formula ,for finding the distance between two points ,(a,b) and (c,d)
Perimeter of Rectangle ,ABCD , which is a square
=Sum of Length of all sides
= AB + BC+CD+DA
= 4 × Length of any side
= 2 +2+2+2 or → 4 × 2
= 8 units
Answer:
8 Units
Step-by-step explanation:
A (-6 , -4)
B (-4 , -4)
C (-4 , -2)
D (-6 , -2)
AB = √( (-4-(-6))² + (-4-(-4))²) = √ (2² + 0²) = √(4 + 0) = 2
BC = √( (-4-(-4))² + (-2-(-4))²) = √ (0² + 2²) = √(0 + 4) = 2
CD = √( (-6-(-4))² + (-2-(-2))²) = √ ((-2)² + 0²) = √(4 + 0) = 2
AD = √( (-6-(-6))² + (-2-(-4))²) = √ (0² + 2²) = √(0 + 4) = 2
Perimeter of ABCD = AB + BC + CD + DA
= 2 + 2 + 2 + 2
= 8 Units