Math, asked by maazkazi8223, 1 year ago

reduce the equation root 3x+y+2=0 to 1)slope intercept form 2)intercept form and 3) normal form

Answers

Answered by MaheswariS
11

Given line is 3x+y+2=0

1.Slope-Intercept form:

3x+y+2=0

\implies\,y=-3x-2

\implies\,y=-3x+(-2)

\textbf{This equation is of the form y=mx+c}

\implies\;m=-3\:\:and\:\:c=2

2.Intercept form:

3x+y+2=0

3x+y=-2

Divide bothsides by -2

\frac{3x}{-2}+\frac{y}{-2}=1

\frac{x}{-2/3}+\frac{y}{-2}=1

\text{This equation is of the form }\bf\frac{x}{a}+\frac{y}{b}=1

\implies\;a=-2/3\:\:and\:\:b=-2

3.Normal form:

3x+y+2=0

-3x-y=2

Divide both sides by \sqrt{9+1}=\sqrt{10}, we get

\frac{-3}{\sqrt{10}}x+\frac{-1}{\sqrt{10}}y=\frac{2}{\sqrt{10}}

\text{This equation is of the form }\bf\,x\:cos\alpha+y\:sin\alpha=p

\implies\,\alpha=cos^{-1}(\frac{-3}{\sqrt{10}})=sin^{-1}(\frac{-1}{\sqrt{10}})\:\:and\:\:p=\frac{2}{\sqrt{10}}

Similar questions