Reduce the following to its
simplest form using laws of boolean
algebra : A.B'+A'.B.C'+(A.C)'+B.C
Answers
Answered by
8
Answer:
ab'+a'bc'+a'+c'+bc ((ac)'=a'+c' demorgon law)
=ab'+a'+bc+c' (a'bc'+c'=c' absorption law)
=(a+a')(b'+a')+(b+c')(c+c')
=b'+a'+b+c'
=a'+c'
Answered by
1
Answer:
A.B'+A'.B.C'+(A.C)'+B.C
→A.B'+A'.B.C'+A.+C'+B.C
→A.B'+A'(B.C'+1)+C'+B.C
→A.B'+A'+C'+B.C
→(A+A')(A'+B')+(C'+B)(C'+C) [A+BC=(A+B)(A+C)]
→1.(A'+B')+(B+C').1 [A'+A=1]
→A'+B'+B+C'
→A'+C'+1
→(A'+1)+C'
→1+C'
→1 ANSWER.
Similar questions