Math, asked by Anonymous, 1 year ago

Refer the attached picture. Solve fast please.

3-D GEOMETRY. ​

Attachments:

Answers

Answered by Anonymous
6

Given:

  • A variable plane remains at a constant distance 3p from the origin cut the coordinate axes at A, B and C.

To Prove:

  •  {x}^{ - 2}  +  {y}^{ - 2}  +  {z}^{ - 2}  =  {p}^{ - 2}

Proof:

Let,

the Equation of the variable plane be

 \frac{x}{a}  +  \frac{y}{b}  +  \frac{z}{c}  = 1

Now,

This plane meets the X-axis, Y-axis and Z-axis at the points A(a,0,0) , B(0,b,0) and C(0,0,c) respectively.

Further,

Let,

(d,e,f) be the Coordinate of the centroid of ∆ABC.

Then,

We have,

d =  \frac{a + 0 + 0}{3}   =  \frac{a}{3} \\  \\ e =  \frac{0 + b + 0}{3} =  \frac{b}{3}   \\  \\ e =  \frac{0 + 0 + c}{3}  =  \frac{c}{3}

Therefore,

We get,

 =  > a = 3d   \\   =  > b = 3e \\ =  >  c =3f

But,

We know that,

length of perpendicular from (0,0,0) to the given plane = 3p

Therefore,

We get,

 =  > 3p =  \frac{ | \frac{0}{a}  +  \frac{0}{b} +  \frac{0}{c}  - 1 | }{ \sqrt{ \frac{1}{ {a}^{2} } +  \frac{1}{ {b}^{2} } +  \frac{1}{ {c}^{2} }   } }  \\  \\  =  > 3p =  \frac{1}{ \sqrt{ \frac{1}{ {a}^{2} }  +  \frac{1}{ {b}^{2} } +  \frac{1}{ {c}^{2} }  } }  \\  \\  =  >  \sqrt{ \frac{1}{ {a}^{2} } +  \frac{1}{ {b}^{2} }   +  \frac{1}{ {c}^{2} } }  =  \frac{1}{3p}  \\  \\  =  >  \frac{1}{ {a}^{2} }  +  \frac{1}{ {b}^{2} }  +  \frac{1}{ {c}^{2} }  =  \frac{1}{9 {p}^{2} }

Now,

Putting the respective values of a, b and c

We get,

 =  >  \frac{1}{ {(3d)}^{2} }  +  \frac{1}{ {(3e)}^{2} }  +  \frac{1}{ {(3f)}^{2} }  =  \frac{1}{9 {p}^{2} } \\  \\  =  >   \frac{1}{9 {d}^{2} }  +  \frac{1}{9 {e}^{2} }  +  \frac{1}{9 {f}^{2} }  =  \frac{1}{9 {p}^{2} }  \\  \\  =  >  \frac{1}{ {d}^{2} }  +  \frac{1}{ {e}^{2} }  +  \frac{1}{ {f}^{2} }  =  \frac{1}{ {p}^{2} }  \\  \\  =  >  {d}^{ - 2}  +  {e}^{ - 2}  +  {f}^{ - 2}  =  {p}^{ - 2}

Hence,

the locus of the plane is,

  •   \bold \red{{x}^{ - 2}  +  {y}^{ - 2}  +  {z}^{ - 2}  =  {p}^{ - 2} }

Thus, Proved

Similar questions