Math, asked by skyrahmenezes51viib, 4 days ago

Refer this attachment ​

Attachments:

Answers

Answered by Aryan0123
20

Question:

The value of (2^2001 + 2^1999)/(2^2000 - 2^1998) is ____.

\\

Answer:

(B) 10/3

\\

Solution:

 \sf \dfrac{ {2}^{2001}  +  {2}^{1999} }{ {2}^{2000} -  {2}^{1998}  }  \\  \\

Take the number with lesser exponent as a common factor.

 =  \sf{ \dfrac{ {2}^{1999}( {2}^{2}  + 1) }{ {2}^{1998} ( {2}^{2}  - 1)} } \\  \\

On simplifying,

 = \:   \sf{ \dfrac{ {2}^{1999} (4 + 1)}{ {2}^{1998} (4 - 1)} } \\  \\

 \implies \sf{ \dfrac{ {2}^{1999} (5)}{ {2}^{1998} (3)} } \\  \\

 \implies \sf{ \dfrac{ {2}^{1999} }{ {2}^{1998} }  \times \dfrac{5}{3} } \\  \\

We know that

 \dfrac{ {a}^{m} }{ {a}^{n} } =  {a}^{m - n}  \\  \\

Applying the above law of exponent,

 \implies \sf{( {2}^{1999 - 1998} ) \times  \dfrac{5}{3} } \\  \\

 \implies \sf{2 \times  \dfrac{5}{3} } \\  \\

 \implies \sf{ \dfrac{10}{3} } \\  \\

 \therefore  \:  \: \boxed{  \bf{\dfrac{ {2}^{2001}  +  {2}^{1999} }{ {2}^{2000} -  {2}^{1998} } =  \dfrac{10}{ 3} }}

Similar questions