Math, asked by themonotonuspan, 1 year ago

Refer to attached image. Urgently needed.

Attachments:

Answers

Answered by naiya1
4
this is the way by which you can solve
Attachments:
Answered by sivaprasath
0
Solution :

_____________________________________________________________

Given :

To find the value of y,

if,

  \frac{3y- \frac{5}{6} }{4} + 1 =  \frac{2y - \frac{1}{3} }{3} + 5 

_____________________________________________________________

By equating both the equations,

We get,.

 \frac{ \frac{18y - 5}{6} }{4} + 1 =  \frac{ \frac{6y - 1}{3} }{3} + 5

[(\frac{18y - 5}{6})  \div 4] + 1 =  [(\frac{6y-1}{3}) \div 3] + 5

[(\frac{18y - 5}{6})( \frac{1}{4} )] + 1 = [(\frac{6y-1}{3})( \frac{1}{3}) ] + 5

 \frac{18y - 5}{24} + 1 =  \frac{6y-1}{9} + 5

 \frac{18y - 5}{24} -  \frac{6y - 1}{9}  = 5 - 1

By taking LCM{24 & 9} = 72,

⇒ 24 × 3 = 72

⇒ 9 × 8 = 72,.

So,.

 \frac{(18y - 5)(3)}{(24)(3)} -  \frac{(6y-1)(8)}{(9)(8)} = 4

 \frac{54y - 15}{72} -  \frac{48y - 8}{72} = 4

 \frac{54y - 15 - (48y - 8)}{72} = 4

 \frac{54y - 15 - 48y + 8}{72} = 4

 \frac{6y - 7}{72} = 4

6y - 7 = 4(72)

⇒ 6y - 7 = 298

⇒ 6y = 298 + 7

⇒ 6y = 305

y = \frac{305}{6}

_____________________________________________________________

 I'm not sue about my answer,.

⇒ I Hope it's correct,.
.
⇒ If corect,. ⇒⇒ Hope it Helps !!

Similar questions