Physics, asked by ansh3735, 1 year ago

Refractive Index of a glass is 1.65 what is the speed of light in glass​

Answers

Answered by yadhayog8
6

Explanation:

0.606ms-1

n=velocity of light in vaccum/velocity of light in glass .

1.65=1/c in glass

1.65=1/1.65

0.606ms-1

Attachments:
Answered by Anonymous
3

Given :

 \bf Refractive \: index \: of \: flint \: glass, \: η_{g} = 1.65

To Find :

 \bf Speed \: of \: light \:  in \:  glass, v_{g}

Solution :

 \bf We \: know \:  that \: speed \: of \: light \: in \: air, c=3×10⁸m/s

Now, by formula :

 \bf η_{g} = \dfrac{c}{v_{g}}

 \bf \implies v_{g} = \dfrac{c}{η_{g}}

 \bf \implies v_{g} = \dfrac{3 \times 10^{8}m/s}{1.65}

 \bf \implies v_{g} = \dfrac{3}{1.65}\times 10^{8}m/s

 \bf \implies v_{g} = \dfrac{3 \times 100}{165}\times 10^{8}m/s

 \bf \implies v_{g} = \dfrac{\cancel{3} \times 100}{\times{\cancel{165}}_{55}}\times 10^{8}m/s

 \bf \implies v_{g} = \dfrac{100}{55}\times 10^{8}m/s

 \bf \implies v_{g} = 1.8181... \times 10^{8}m/s

 \bf \implies v_{g} = 1.82 \times 10^{8}m/s \: (approx.)

 \bf \therefore Speed \: of \: light \:  in \:  glass, v_{g} =  1.82 \times 10^{8}m/s \: (approx.)

Similar questions