Physics, asked by Cutiepie6554, 1 month ago

Registers of 5,10, 15 ohms are connected in series find the equivalent resistance and current if the potential difference is 5 volt

Answers

Answered by NewGeneEinstein
0
  • R1=5ohm
  • R2=10ohm
  • R3=15ohm

We know

\boxed{\sf R=R_1+R_2+R_3}

\\ \sf\longmapsto R=5+10+15

\\ \sf\longmapsto R=30\Omega

  • Potential Difference=V=5V
  • Current=I=?

Using ohms law

\boxed{\sf \dfrac{V}{I}=R}

\\ \sf\longmapsto I=\dfrac{V}{R}

\\ \sf\longmapsto I=\dfrac{5}{30}

\\ \sf\longmapsto I=0.16A

Answered by TrustedAnswerer19
19

Answer:

 \odot \: \green{ \sf equivalent \: resistance \:  \: R_{eq} = 30\Omega} \\  \\ \odot \:  \orange{ \sf \: current \:  I = 0.167 \: A \: } \:

Explanation:

Given,

 \sf \: resistance \: R_1 = 5\Omega \\  \sf \: resistance \: R_2 = 10\Omega \\  \sf \: resistance \:  R_3 = 15\Omega \\  \sf \: voltage \:  \: v = 5v

To find :

Equivalent resistance </strong><strong>R</strong><strong>_</strong><strong>{</strong><strong>eq</strong><strong>}</strong><strong>

Current = I

Formula :

1) When n resistance are in series:

\green{\boxed{R_{eq}=R_1+R_2+R_3+...+R_n}}\\

2) V = IR

Solution :

1)

all resistors are connected in series.

So,

 \sf \: R_{eq} = R_1 + R_2 + R_3 \\  \sf \:  \:  \:  \:  \:  \:  \:   \:  = 5 + 10 + 15 \\   \sf \:  \:  \:  \:  \:  \:  \:  \: = 30\Omega \:  \\  \\ \green{ \sf equivalent \: resistance \:  \: R_{eq} = 30\Omega}

2)

 \sf \: V  = IR_{eq} \\  \implies \: I =  \frac{V }{R_{eq}}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \:  =  \frac{5}{30}  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf = 0.167 \: A \:  \\  \\  \orange{ \sf \: current \:  I = 0.167 \: A \: }

Attachments:
Similar questions