Math, asked by Ayushi1406, 9 months ago

renu borrows a sum of 50440 at 10%pa compounded half yearly. She pays the amount in three equal half yearly installments of rs x. Find the value of x?

Answers

Answered by sanjeevk28012
5

Given :

The sum of money borrowed = p = Rs 50,440

The rate of interest = r = 10 % pa compounded half yearly

The amount is paid in three equal half yearly installments of Rs x

To Find :

The value of x

Solution :

From Compound Interest method

Amount = Principal × (1+\dfrac{rate}{2 \times 100}) ^{2 \times time}

              = p (1+\dfrac{rate}{2 \times 100}) ^{2 \times time}

Now,

When the amount is paid in three equal half yearly installments of Rs x

i.e  p (1+\dfrac{rate}{2 \times 100}) ^{2 \times time} = x ×  (1+\dfrac{rate}{2 \times 100}) ^{2 \times 3} +   x ×  (1+\dfrac{rate}{2 \times 100}) ^{2 \times 2} +  x ×  (1+\dfrac{rate}{2 \times 100}) ^{2 \times 1}

or,   p (1+\dfrac{rate}{2 \times 100}) ^{2 \times 3} = x ×  (1+\dfrac{rate}{2 \times 100}) ^{2 \times 3} +   x ×  (1+\dfrac{rate}{2 \times 100}) ^{2 \times 2} +  x ×  (1+\dfrac{rate}{2 \times 100}) ^{2 \times 1}

Or,   p (1+\dfrac{rate}{200}) ^{6} = x ×  (1+\dfrac{rate}{200}) ^{6} +   x ×  (1+\dfrac{rate}{200}) ^{4} +  x ×  (1+\dfrac{rate}{200}) ^{2}

Or, 50400 ×  (1+\dfrac{10}{200}) ^{6} = x ×  (1+\dfrac{10}{200}) ^{6} +   x ×  (1+\dfrac{10}{200}) ^{4} +  x ×  (1+\dfrac{10}{200}) ^{2}

Or, 50400 × 1.34 =  x × 1.34 +  x × 1.21 +  x × 1.1

Or,  50400 × 1.34 =  x × ( 1.34 + 1.21 +1.1 )

Or, 50400 × 1.34 =  x × 3.65

Or, 67536 =  x × 3.65

i.e            x = \dfrac{67536}{3.65}

∴             x = Rs 18503

Hence, The value of x is Rs 18503   . Answer

Similar questions