Math, asked by sanjaydangarsanjayda, 1 month ago

replace the letter by digit so that the following calculation are correct A9 2B 97​

Answers

Answered by khushi565148
3

Answer:

Let N be the 5 digit number JOINT .

Let J+O+I+N+T=S

required : (J+O+I+N+T)3=JOINT=N(1)

minimum value of N is 10234 and maximum value 98765

10234−−−−−√3≤S≤98765−−−−−√3

21<S<47

But maximum possible S=9+8+7+6+5=35

21<S≤35(2)

N=104J+1000O+100I+10N+T

Take mod w.r.t 9

Since 10n≡1mod9

N≡J+O+I+N+T≡Smod9.

Therefore S3≡Smod9

this is possible if mod values are −1,0 or 1

So eligible values of S consistent with (2)are26,27,28 and 35

263=17576; Digits are not distinct.Discard.

273=19683; Digits are distinct ; 1+9+6+8+3=27 . O.K.

283=21952; Digits are not distinct.Discard.

353=42875; Digits are distinct ; 4+2+8+7+5=26≠35. Discard.

So only solution is 19683

Answered by XxbeautyQueenxX
1

Answer:

 \binom{ \binom{ \binom{ \binom{ \binom{ \binom{ \binom{ \binom{ \binom{ \binom{ \binom{ \binom{?}{?} }{?} }{?} }{?} }{?} }{?} }{?} }{?} }{?} }{?} }{?} }{?}

Similar questions