Math, asked by dhananjayprasad7439, 5 months ago

Represent the following identity in A+iB form : (2+3i)(5+4i) / (5+2i)(2+4i).​

Answers

Answered by BrainlyPopularman
8

GIVEN :

 \\ \implies\bf \dfrac{(2+3i)(5+4i)}{(5+2i)(2+4i)} \\

TO FIND :

• Represent in A+iB form.

SOLUTION :

• Let –

 \\ \implies\bf P = \dfrac{(2+3i)(5+4i)}{(5+2i)(2+4i)} \\

 \\ \implies\bf P = \dfrac{(2 \times 5) + (2 \times 4i) + (3i \times 5) + (3i)(4i)}{(5 \times 2) + (5 \times 4i) + (2i \times 2) + (2i \times 4i)} \\

 \\ \implies\bf P = \dfrac{10+8i+15i+12 {i}^{2} }{10+20i+4i+8 {i}^{2} } \\

 \\ \implies\bf P = \dfrac{10+8i+15i - 12}{10+20i+4i - 8} \\

 \\ \implies\bf P = \dfrac{ - 2 + 23i}{2+24i} \\

• Now rationalization –

 \\ \implies\bf P = \dfrac{ - 2 + 23i}{2+24i} \times \dfrac{ 2 - 24i}{2 - 24i} \\

 \\ \implies\bf P = \dfrac{ (- 2 + 23i)(2 - 24i)}{(2+24i)(2 - 24i)}\\

 \\ \implies\bf P = \dfrac{ ( - 2 \times 2) + ( - 2 \times  - 24i) + (23i \times 2) + (23i \times  - 24i)}{ {(2)}^{2} -  {(24i)}^{2}}\\

 \\ \implies\bf P = \dfrac{ - 4+48i+46i+552}{54 + 576}\\

 \\ \implies\bf P = \dfrac{94i+548}{630}\\

 \\ \implies \large{ \boxed{\bf P = \dfrac{548}{630} +  \dfrac{94}{630} i}}\\

Similar questions